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Different CNN structures for image classification

@ The evolution of network architectures is mostly driven by image and video
understanding, and natural language processing

@ We will cover some milestone architectures for image understanding since
2012 (but not all of them, obviously)

o AlexNet
o Clarifai

o Overfeat
e VGG

Network-in-network

GoogleNet
ResNet
DenseNet
ResNeXt
MobileNet
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Model architecture-AlexNet Krizhevsky 2012

@ 5 convolutional layers and 2 fully connected layers for learning features.
@ Max-pooling layers follow first, second, and fifth convolutional layers

@ The number of neurons in each layer is given by 253,440, 186,624,
64,896, 64,896, 43,264, 4,096, 4,096, 1,000

@ 650,000 neurons, 60,000,000 parameters, and 630,000,000 connections
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(Krizhevsky NIPS 2014)
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How transferable are features in CNN networks?

o (Yosinski et al. NIPS'14) investigate transferability of features by CNNs
@ The transferability of features by CNN is affected by
o Higher layer neurons are more specific to original tasks

o Layers within a CNN network might be fragilely co-adapted

o Initializing with transferred features can improve generalization after
substantial fine-tuning on a new task
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@ ImageNet are divied into two groups of 500 classes, A and B

@ Two 8-layer AlexNets, baseA and baseB, are trained on the two groups,
respectively
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Transfer and selffer networks

@ A selffer network BnB: the first n layers are copied from baseB and frozen.
The other higher layers are initialized randomly and trained on dataset B.
This is the control for transfer network

@ A transfer network AnB: the first n layers are copied from baseA and
frozen. The other higher layers are initialized randomly and trained toward
dataset B
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Transfer and selffer networks (cont’d)

@ A selffer network BnB+: just like BnB, but where all layers learn

@ A transfer network AnB+: just like AnB, but where all layers learn
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Results
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Dissimilar datasets

o Divide ImageNet into man-made objects A (449 classes) and natural
objects B (551 classes)

@ The transferability of features decreases as the distance between the base
task and target task increases
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@ Nowadays, ImageNet pre-trained networks are widely used as weight
initilization for finetuningthe networks on other tasks
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Investigate components of CNNs

Filter size

Filter (channel) number
Stride
Dimensionality of fully connected layers

Data augmentation

Model averaging
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Investigate components of CNNs (cont'd)

o (Chatfield et al. BMVC'14) pre-train on ImageNet and fine-tune on
PASCAL VOC 2007
o Different architectures
o mAP: CNN-S > (marginally) CNN-M > (~%2.5) CNN-F
o Different data augmentation
o No augmentation
o Flipping (almost no improvement)

o Smaller dimension downsized to 256, cropping 224 x 224 patches from the
center and 4 corners, flipping (~ 3% improvement)

Arch. convl [ conv2 [ conv3 convd [ conv5 | fulle [ full7 [ full |
64x11x11 256x5x5 256x3x3 256x3x3 256x3x3 4096 | 4096 | 1000 East
CNN-F st. 4, pad 0 st.1,pad2 | st.1,pad1 | st.1,pad1 | st.1, pad1 | drop- | drop- | soft- | giarto AlexNet
LRN, x2 pool | LRN, x2 pool - - x2 pool out out | max
96x7x7 256x5x5 512x3x3 512x3x3 512x3x3 4096 | 4096 | 1000 Medium
CNN-M | st. 2, pad 0 I st. 2, pad 1 |Jst. 1, pad 1 -1, pad 1f|Ist. 1, pad 1Y | drop- | drop- | soft- | Goao-40 Glarifai model
LRN, x2 pool | LRN, x2 pool - - x2 pool out out | max
96x7X7 256x5x5 512x3x3 512x3x3 512x3x3 4096 | 4096 | 1000 | Slow
CNN-S | st 2, pad 0 pad1 |st.1,pad1 | st 1, pad1 [st.1, pad 1 | drop- | drop- | soft- | similar to OverFeat
LRN,lg}mrl X2 pool - - F3 pool] out out | max | Accurate model

(Chatfield et al. BMVC 2014)
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Investigate components of CNNs (cont'd)

Gray-scale vs. color (~ 3% drop)
Decrease the number of nodes in FC7

o to 2048 (surprisingly, marginally better)
o to 1024 (marginally better)
e to 128 (~ 2% drop but 32x smaller feature)
Change the softmax regression loss to ranking hinge loss
o Weh(Ipos) > wed(Ineg) + 1 — & (€ is a slack variable)
o ~ 2.7% improvement
o Note, L2 normalising features account for ~ 5% of accuracy for VOC 2007
@ On ILSVRC-2012, the CNN-S achieved a top-5 error rate of 13.1%
o CNN-F: 16.7%
o CNN-M: 13.7%
o AlexNet: 17%
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Model architecture-Clarifai

@ Winner of ILSVRC 2013
@ Max-pooling layers follow first, second, and fifth convolutional layers

@ 11x11 to 7x7, stride 4 to 2 in 1st layer (increasing resolution of feature
maps)

Other settings are the same as AlexNet

Reduce the error by 2%.

256 Max

Max o booing 4T
pocling pooling
Val Val Test
Error % Top-1 | Top-5 | Top-5
(Gunji et al, 2012) B B 36.2
(Krizhevsky et al., 2012), 1 convnet 40.7 18.2 ——
1 convnet for Clarifai 38.4 16.5 -
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Model architecture-Clarifai further investigation

@ More maps in the convolutional layers leads to small improvement.

@ Model averaging (ensemble) leads to improvement (random initialization).

L\? A Lu 13
r = Jn ]!Qi e g™ Jﬁ:\:‘; 13

sa i
Max Max pooling
pooling poulV /
Val Test
‘ Error % p- ‘ Top-5 ‘ Top-5 ‘
| (Gunji et al., 2012) | - | - 26.2
(Krizhevsky et al., 2012), 1 AlexNe 40.7 18.2 ——
1 convnet for Clanfa\ 38.4 16.5 ——
5 convnets for Clar}ﬁ 36.7 15.3 15.3
1 convnet for Clan’fa\ / U \Mth
layers 3,4,5: 512,1024,51Z maps — (b) 37.5 16.0 16.1
6 convnets, (a) & (b) combined 36.0 14.7 14.8
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Model architecture-Overfeat

@ Less pooling and more filters (384 > 512 for conv3 and 384 > 1024 for

conv4/5).

N\ Clarifai
\ \110 \
[ o a2 13 13
3: _ E [
T =t EE 13 13 dense’| fdensd
lezs
- s 56 i
Max
\ |\ . = | b
N\ || stride\] pacling pooling
223\ [l of 2
Qutput
Layer 1 2 4 5 6 7 8
Stage conv + max copv cotfv conv + max full full foll
% channels 56 512 1024 1024 3072 | 4096 1000
Filter size TIx11 3x3 3x3 3x3 B - -
Conv. stride 4xd 1x1 Ixl 1x1 - -
Pooling size 2x2 - - 2x2 - -
Pooling stride - - - B
Zero-Padding size Ixixixl | Ixixixl IxIxIxl - - -
Spatial mnput size 12x12 12x12 12x12 6x6 1x1 1x1
Overfeat
top-5 error (%)
Clarifai Overfeat5 Overfeat-7
Without data augmentation 1.5 16.97 14.18
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Model architecture-Overfeat

o With data augmentation, more complex model has better performance.

Clarifai
\no
13
o g 3 q% e dense| fdens
u.: 3
30 Tt
10
\ 256 e i
Max Max pooling
Snde pooling ‘\ pooling
Output
Layer 1 2 4 5 6 7 8
Siage conv - max | comv[rmax | cohv cofv | comv+max || Rll | fll all
# channels 96 256 512 1024 1024 3072 | 4096 1000
Filter size 11x11 5x3 3x3 3x3 3x3 - - -
Conv. stride 4x4 1x1 1x1 1x1 1x1 - -
Pooling size Ix2 2x2 - - 2x2 - -
Pooling stride 2x2 2x2 - - 2x2 - -
Zero-Padding size - - 1xlIxIx1 IxIxIx1 IxlxlIxl - - -
Spatial input size 231x231 24x24 12x12 12x12 12x12 6x6 1x1 1x1
Overfeat

top-5 error (%)
Overfeat-5 Overfeat-7

Clarifai
With data augmentation 1476 13.52 1197
Without data augmentation 16,5 18.97 14.18

duction to Deep Learnii




Model architecture-the devil of details

@ CNN-F: similar to AlexNet, but less channels in conv3-5.

@ CNN-S: the most complex one.

o CNN-M 2048: replace the 4096 features in fc7 by 2048 features. Makes

little difference.

o Data augmentation: the input image is downsized so that the smallest
dimension is equal to 256 pixels. Then 224 x 224 crops are extracted from
the four corners and the centre of the image.

[Arch. [ _cowl | com2 | comw3 | comd | convs | Tull | Tall7 [Tullg]
256X5x3 756K3%3 [ 2 4096 [ 4096 [ T000
T CNN-F st. 1.pad2 |st T.pad 1 |s drop- | drop- | soft-
ILSVRC-2012 (top-5 error) LRN. x2 pool - - pool | out | out | max
(a) Clarifai 1 ConvNet 16.0 S| SIZx3 | SIZxIn3 | STZns | 4096 | 4006 [ 1000
(b) CNNF 16.7 CNN-M | st 2, pad0 st. I,pad 1 |st. 1,pad | |st. 1,pad 1|drop- |drop- | soft-
(c)CNN M 137 LRN. x2 pool - - x2pool | out | out | max |
2 15 TEXTX STOXIX3 | S12x3x3 | STXX3x3 | 4096 | 4096 | 1000
(d) CNN M 2048 135 CNN-S | st.2,pad0 | [st. 1lpad1 |st I.pad1|st I,pad ! |st 1, pad I|drop- |drop-| soft-
(¢) CNN S 13.1
h LRN, x3 pool x2 pool - - x3 pool out | out | max
Clarifai | 96x7x7 256x5x5 | 384x3x3 | 384x3x3 [256x3x3 |4096 |4096|4096
st. 2, st. 2, pad1 |st. 1,pad1|st. 1,pad1st. 1,pad1|drop |drop |drop
LRN,x2 pool | LRN,x2 pool
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Model architecture - VGG Network

@ The deep network VGG was proposed in 2014

o Apply 3 x 3 filters for all layers

@ Introduction of modular design: conv blocks only responsible for
convolutions and downsampling layers/blocks only responsible for feature
map downsampling

AlexNet

FC (1000)

FC (4096) VGG
3x 3 Conv (384), pad 1
VGG block
:

—— 1
2 x 2 MaxPool, stride 2
3 x 3 MaxPool, stride 2
3 x 3 Gonv, pad 1

t
!

3 x 3 MaxPool, stride 2

,—1—\ 3 x 3 Conv, pad 1
11 % 11 Conv (96), stride 4
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Model architecture - VGG Network

@ Better to have deeper layers. 11 layers (A) — 16 layers (D)

@ From 16 layers (D) to 19 layers (E), accuracy does not improve

ConvNet Configuration
A A-LRN B C D E
11weight | 11 weight | 13 weight | 16weight | 16 weight | 19 weight
layers layers layers layers layers layers
ConvNet config. (Table 1) smallest image side top-1 val. error (%) | top-5 val. error (%)
tramn (5) test ((J)
A 256 256 29.6 104
A-LRN 256 256 297 105
B 256 256 28.7 9.9
256 256 28.1 9.4
Cc 384 384 28.1 9.3
756,512] | 384 273 88
256 256 27.0 88
D 384 384 26.8 87
[256;512] 384 25.6 81
256 256 273 9.0
E 384 384 26.9 87
[256;512] 384 25.5 8.0
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Model architecture - VGG Network

@ Scale jittering at the training time
@ The crop size is fixed to 224 x 224
@ S: the smallest side of an isotropically-rescaled training image
@ Scale jittering at the training time: randomly select S to be within
[256, 512]
@ LRN (obsolete): local response normalisation. A-LRN does not improve on
A
ConvNet Configuration
A A-LRN B C D E
11 weight | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight
layers layers layers layers layers layers
ConvNet conﬁg. (Table 1) smallest image side top-1 val. error (%) | top-5 val. error (%)
train (5) test ((J)
A 256 256 296 104
A-LRN 256 256 29.7 10.5
B 256 256 287 99
256 256 28.1 9.4
C 384 384 28.1 9.3
[356,512] | 384 773 33
256 256 27.0 88
D 384 384 268 87
[256:512] 384 256 81
256 256 273 9.0
E 384 384 26.9 87
[356,512] | 384 355 5.0
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Model architecture - very deep CNN

Multi-scale averaging at the testing time.
The crop size is fixed to 224 x 224.
Q: the smallest side of an isotropically-rescaled testing image.

Running a model over several rescaled versions of a test image
(corresponding to different @), followed by averaging the resulting class
posteriors. Improves accuracy (25.5 — 24.8).

ConvNet Configuration
A A-LRN B C D E
11 weight | 11 weight | 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
ConvNet config. (Table 1) smallest unage side top-1 val. error (%) | top-5 val. error (%)
train (5) test ((J)
B 256 224.256,288 282 9.6
256 224,256,288 277 9.2
C 384 352,384,416 278 92
[256; 512] | 256,384,512 26.3 8.2
256 224,256,288 26.6 8.6
D 384 352,384,416 26.5 8.6
[256: 512] | 236,384,512 338 73
256 224,256,288 269 8.7
E 384 352384416 26.7 8.6
[ [256:512] | 256,384,512 248 7.5
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Model architecture - Network in Network

@ Use 1x1 filters after each convolutional layer.

Input patch Output feature vector Output feature vector
(cIxhxw) (e2x 1x1) (e3x1Ix1)
Convolutional Filter Jutional Fil
(€2xclxhxw) C Filter
(3xc2x1xl)
—_—
Convolutional layer CCCP layer

Efficient implementation of CCCP
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Model architecture - Network in Network

@ Remove the two fully connected layers (fc6, fc7) of the AlexNet but add
NIN into the AlexNet.

@ NIN are just 1 x 1 (pointwise) convolutions

Feed to Softma;

Parameter Number Performance Time to train (GTX Titan)
AlexNet 60 Million (230 Megabytes) | 40.7% (Top 1) | 8 days
NIN 7.5 Million (29 Megabytes) | 39.2% (Top 1) | 4 days
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Model architecture - GoogleNet / Inception-v1

@ Inspired by the good performance of NIN.

[ ] =
P!.BIW(IIK I‘ll network

|
\ !
\

_We need to go degper
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Model architecture - GoogleNet / Inception-v1

@ Inception module is the basic operation module in GoogleNet /
Inception-v1

@ The 1 x 1 convolutions are used for reducing the number of feature
dimension before the computationally expensive 3 x 3 and 5 X 5
convolution

e 1x1,3x3,5 x5 convolutions and 3 X 3 max pooling are used to encode
different types of features before concatenation

Filter
concatenation
3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions 4 4 3

&tions 1x1 convolutions 3x3 max pooling
"

Previous layer
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Model architecture - GoogleNet / Inception-v1

@ Previously, fully connected layer are used at the end of network

Number of weights (connections) = 7 X 7 x 1024 x 1024 = 51.3M

@ In GoogleNet, global average pooling is used nearly at the end of network
by averaging each feature map from 7 x 7to 1 x 1

Number of weights (connections) = 0

@ It is found to improve ImageNet classification accuracy by 0.6% and is less
prone to overfit

Fully connected N Global Average pooling
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Model architecture - GoogleNet / Inception-v1

@ Based on inception module
o Cascade of inception modules

o Widths of inception modules ranges from 256 filters in bottom modules to
1024 in top inception modules

@ There are auxiliary classifiers, which are modeled as intermediate softmax
branches for training. Each branch consists of 5 x 5 global average
pooling, 1 x 1 x 128 convolutoin, 128 x 1024 FC, and 1024 x 1000 FC,
Softmax function

o Weights of the auxiliary classifier: 0.3 and 0.6
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Model architecture - GoogleNet / Inception-v1

@ Parameters

type "':'[fc"[ depth | #1x1 ;‘:‘:'m £33 ;d':u’_ L5xE :;_'_;} params | ops
convolution 11211264 1 27K 34M
max pool 565664 0
convolution Ax3, 56x56x 192 2 64 192 112K 360M
max pool Ixd/ 28x28x192 0
inception (3a) 2828 2 64 96 128 16 32 32 139K 128M
inception (3b) 28x28x 480 2 128 128 192 iz 96 64 380K 304M
max pool Ind/ 14314480 0
inception (4a) 14142512 2 192 96 208 3 48 64 364K M
mception (4b) 14x14x512 2 160 112 24 64 64 437K 85EM
inception (4¢) 143142512 2 128 128 24 64 64 463K 100M
inception (4d) 1414528 2 112 144 238 3z 64 64 SBOK 19M
imception (4¢) 14x14x832 2 256 160 320 32 128 128 BA0K 170M
max pool Ind/ TxTx832 0
inception (3a) TxTx832 2 256 160 320 3z 128 128 1072K | 54M
mception (5b) TxTx1024 2 384 192 384 48 128 128 1388K 7IM
avg pool THT, 1x 11024 0
dropout (40¥5) Ix 11024 [}
lincar 111000 1 1000K ™M
softmax 1x 11000 L]
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Model architecture - Inception-v2 / BN-Inception

@ Batch normalize is introduced into Inception-v2
@ 5 x 5 convolution is replaced by two 3 x 3 convolution for parameter
reduction while maintaining the size of the receptive

08

07k )

06
= = = Inception

ke = BN-Baseline
osfgbr e BN-x5

- =— BN-x30

1 v BN-x5-Sigmoid

! 4  Steps to match Inception
0.alle 1 1 1 T T T

5M 10M 15M 20M 25M 30M

Inception: Inception-vl without BN

BN-Baseline: Inception with BN

BN-x5: Initial learning rate is increased by a factor of 5 to 0.0075
BN-x30: Initial learning rate is increased by a factor of 30 to 0.045
BN-x5-Sigmoid: BN-x5 but with Sigmoid
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Model architecture - Inception-v3

o Factorization was introduced in convolution layer

o Using 3 x 1 and 1 x 3 filters to approximate 3 x 3 filters, number of
parameters decreases from 9 to 6 (33% fewer)

o Using 7 x 1 and 1 x 7 filters to approximate, number of parameters
decreases from 49 to 14 (71% fewer)

@ Inception A, B, C modules

Filter Concat

Filter Concat

5%5in Two 1x7 and 7x1 1x7 and 7x1
GoogleNet replacing two 7x7 replacing 7x7
(Inception-v1)

n=7in
implementation

Inception Module B

Inception Module A

For promoting

high dimensional Filter Concat




Model architecture - Inception-v3

@ Conventionally, in AlexNet and VGGNet, the drawback of downsampling is
either too greedy by max pooling followed by convolution layer, or too
expensive by convolution layer followed by max pooling

o Efficient grid size reduction in v3: half feature channels are obtained via
convolution with a stride 2 and half feature channels are obtained via max

pooling

17x17x640

Pooing

Filter Concat

17x17x320 i 17x17x320
35x35x320

Grid Size Reduction o .

(with some modifications) Grid size Reduction

gt o003, Outpu 62048 2x Inception Module C

5x Inception Module A 4xInception Module B
L

oerheee

input Guiput
AvgPool 20029003 xexa0an

MaxPool Finalport 8842048 - 1001
Concat

Gropot — Ausiliary Classifier

Fully conneciad

Sofmax
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Roadmap of Network Depth

28.2

[ 22 layers ] [ 19 layers l

\

67 7.3
357 I

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

shallow

ILSVRC'11  ILSVRC'10
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ResNets @ ILSVRC & COCO 2015 Competitions

@ The milestone network architecture ResNet was introduced in 2015
@ It won 1st places in all five main tracks of the ImageNet Challenge
o ImageNet Classification: ‘Ultra-deep’ 152-layer nets
o ImageNet Detection: 16% better than the 2nd
o ImageNet Localization: 27% better than the 2nd
COCO Detection: 11% better than the 2nd
COCO Segmentation: 12% better than the 2nd
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Going deeper

Bear the following in mind:
@ Batch normalization. [Sergey loffe, Christian Szegedy. ICML 2015]

Is learning better networks as simple as stacking more layers?
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Simply stacking more layers

CIFAR-10

train error (%) test error (%)

56-layer
56-layer

20-layer
20-layer

<

2 3 4 5 1 2 3
iter. (le4) iter. (1e4)

@ Plain nets: stacking 3x3 conv layers.

56-layer net has higher training error and test error than 20-layer net.

Prof. LI Hongsheng
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Deep Residual Learning

Plain net:

weight layer

anytwo
stacked layers

weight layer

H(x)

o H(x) is any desired mapping for any two layers

@ The learning process generally makes these two convolution (weight) layers
fit the mapping H(x)
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Deep Residual Learning

Residual learning block (naive version):

X

weight layer

F(x) identity

weight layer X

Hx)=F@x)+x @

@ H(x) is any desired mapping
@ Instead of letting the two layers fit H(z), ResNet makes these two conv
(weight) layers fit the residual F'(x), where F(z) = H(x) — x
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Deep Residual Learning

Residual learning block (naive version):

X

weight layer

identity
X

F(x)

weight layer

Hx)=F@)+x @

F(z) is a residual mapping w.r.t. identity.
o If identity were optimal, easy to set weights as 0
o If optimal mapping is closer to identity, easier to find small fluctuations

o With the identity residual connection, the gradients are very easy to
back-propagated back to bottom network layers
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Network Structure

Basic design: VGG modular style Xi
@ all 3 x 3 conv
@ no FC layer, no dropout
BN
RelU
Training details:
BN
@ Trained from scratch
) A addition
@ Use batch normalization
RelU
e Standard hyper-parameters & v
X+l

augmentation ]
Figure: Orignal residual block in CVPR'16 paper
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Building block of ResNet

@ Two types of basic residual blocks are used

1x1, 64

1x1, 256

256-d

@ A shortcut undergoes a 1 x 1 convolution when the output dimension

increases

@ Downsampling is achieved by convolution layers that have a stride of 2

Jayer name | output size 18-layer [ 34dayer | 50-layer [ 101-layer [ 152-layer
convl | 112x112 Tx7, 64, stride 2
3%3 max pool, stride 2
11,64 1x1, 64 1x1, 64
comvZx | 56x56 [gig*gi]xz [;ig;‘:] 3x3.64 | x3 | | 3x3.64 |x3 3x3,64 | x3
i g 1x1,256 1x1,256 11,256
Ix1, 128 Ix1,128 Ix1,128
com3x | 28x28 [xz:i:}xz [2:::§§]x4 3x3,128 x4 | | 3x3,128 |x4 | | 3x3,128 |8
3 i 1x1,512 1x1,512 1x1,512
1x1,256 1x1,256 1x1,256
convax | 14x14 [;i;gg}xz [iigigg]x 3x3,256 | x6 || 3x3,256 |x23 || 3x3,256 |x36
g g 1x1, 1024 Ix1, 1024 11,1024
1x1,512 1x1,512 [ 1x1,512
comwsx | 7x7 Bigﬁﬂxz B:g;ﬁ]xa 3x3,512 | x3 3x3,512 | x3 3x3,512 | x3
g , 11,2048 1x1,2048 | 1x1,2048
Ix1 average pool, 1000-d fc, softmax
FLOPs 18x10° | 36x10° [ 3.8x10° [ 7.6x10° [ 13x10?
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Network Structure

Detailed ResNet structure (righimost) for ImageNet 2015 entry: (pari1)

VGG-19 34-layer plain 34-layer residual
image image image
teazs |__daconves ]
size: 224 3x3 conv, 64
pool, /2
output
e 12
| 3x3conv, 128 | 7x7 conv, 64, /2| 7x7 conv, 64, /2 |
pool, /2 pool, /2 pool, /2
output
size: 56 l 3x3 conv, 256 I | 3x3 conv, 64 | I 3x3 convy, 64 I
v
l 3x3 conv, 256 I I 3x3 conv, 64 I | 3x3 conv, 64 I
2 v
| 3x3 conv, 256 | I 3x3 conv, 64 I | 3x3 conv, 64 |
v v 2
I 3x3 conv, 256 I | 3x3 conv, 64 | I 3x3 conv, 64 I
1 L 7
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Network Structure

Detailed ResNet structure (rightmost) for ImageNet 2015 entry: (pari2)

| 33 S | | 33 &
2
onput pool, /2 [ 3xacony,512,72 | [ 3x3cony, 512,72 | Y
L 2 L 2 M
[ 33conv,512 | [ 3aconv512 |
v =
[ 3x3conv,512 | [ 3x3conv,512 |
L 2 L 2
| 33cony,512 | | 3x3cony, 512
2
| 33conv,512 | | 3x3cony,512 |
L 2
[ 33cony,512 | [ 33cony,512 |
v \
output avgpool avg poo
2 ¥
| fc 4096 | [ fc 1000 | [ fc 1000 |

fc 1000

The dotted shortcuts increase channel dimensions.

ELEG549.
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CIFAR-10 experiments

CIFAR-10 plain nets CIFAR-10 ResNets
%

/ 56-layer

44-layer
: \ &z 32-layer g 20-layer
: S 20-layer g 32-layer
"\ 44-layer
s 56-layer
:gi::: solid: test 110-layer

T t 3 dashed: train T 3

3 4 3 4
iter. (1e) iter. (1e4)

Deep ResNets can be trained without difficulties.
Deeper ResNets have lower training error, and also lower test error.
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ImageNet experiments

ImageNet plain nets ImageNet ResNets
\ s I
! \
\.
- t - ~
< . - <
H Nvit g 34-layer s 18-layer
he 1 B
Ly NAL
solid: test
lain-18| ResNet-18
dashed: train 18-layer o[ ZResNet 34 34-layer
2 10 20 30 40 50 2 10 20 30 40 50
iter. (1e4) iter. (1e4)

Deep ResNets can be trained without difficulties.
Deeper ResNets have lower training error, and also lower test error.

ELEG5491: Introduction to Deep Learning



ImageNet experiments

@ Three slightly different blocks are tested
@ A - The shortcut has identity mapping with extra zero entried padded if

the feature dimension increases

@ B - A shortcut undergoes a 1 x 1 convolution when the dimension increases

@ C - All shortcuts undergo 1 x 1 convolutions

o After this inveistigation, the authors decided to make all other ResNet use

the B option

model top-1 err. top-5 err.
VGG-16 [41] 28.07 9.33
GoogLeNet [44] - 9.15
PReLU-net [13] 2427 7.38
plain-34 28.54 10.02
ResNet-34 A 25.03 7.76
ResNet-34 B 24.52 7.46
ResNet-34 C 24.19 7.40
ResNet-50 22.85 6.71
ResNet-101 21.75 6.05
ResNet-152 21.43 5.71

Prof. LI Hongsheng
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Inception-ResNet-v2 model

Relu activation
Dropout (keep 0.8) Ouput 172
Activation scaling
‘ Average Pooling Ot 172
1x1 Conv
5 x Inception-resnet-C |~ *" "™ (1154 Lmear)\
7x1 Conv
(192)
Reduction-B Ouput Btz t
§ 1x1 Conv 1x7 Conv
T (192) (160)
1x1 Conv
I (128)
B =

L
Relu activation
5 x Inception-resnet-A |~ ©F e

Zoom-in description of Inception-resnet-B block.

St - - .
em Ot 50520 From empirical evidence:
1. Training with residual connections accelerates the

Input (299x299x3) 2003 training of Inception networks significantly;
2. Scaling down residuals before adding them to the
Inception-Resnet v2 subsequent layer’s activation stabilizes training.
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Experiment results

Single model evaluated on ILSVRC CLS 2012 validation set.

Network Top-1 Error | Top-5 Error
BN-Inception [6] 25.2% 7.8%
Inception-v3 [15] 21.2% 5.6%
Inception-ResNet-v1 21.3% 5.5%
Inception-v4 20.0% 5.0%
Inception-ResNet-v2 19.9% 4.9%

Prof. LI Hof

Network Crops | Top-1Error | Top-5 Error
ResNet-151 [5] dense 19.4% 4.5%
Inception-v3 [15] 144 18.9% 4.3%
Inception-ResNet-v1 144 18.8% 4.3%
Inception-v4 144 17.7% 3.8%
Inception-ResNet-v2 144 17.8% 3.7%
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Further investigation on residual block design

@ Investigation on the function format of the shortcut connections

(a) original

[ixiconv] [3x3conv]

Prof. LI Hong: ELEG5491: Introduction to Deep Learning



Further investigation on residual block design

case I Fig. | on shortcut | on F I error (%) ‘ remark
original [1] Fig. 2(a) 1 1 6.61
0 1 fail This is a plain net
constant . .
scaling Fig. 2(b) 0.5 1 fail
0.5 0.5 12.35 frozen gating
Isi 1—g(x) g(x) fail init bg=0 to —5
exclusive .
gating Fig. 2(c) 1—g(x) g(x) 8.70 init by=-6
1—g(x) g(x) 9.81 init bg=-7
shortcut-only Fig. 2(d) 1—g(x) 1 12.86 init bg=0
gating 1 —g(x) 1 6.91 init by=-6
1x1 conv shortcut | Fig. 2(e) 1x1 conv 1 12.22
dropout shortcut | Fig. 2(f) | dropout 0.5 1 fail

Figure: CIFAR-10 test set using ResNet-101

@ The plain shortcut connections are the most direct paths for the
information to effective propagate

@ All tested multiplicative manipulations (scaling, gating, 1 x 1 convolution,
and dropout) on the shortcus hamper information propagation
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Further investigation on residual block design

@ Investigation on the usage of activation functions

case ‘ Fig. | ResNet-110 | ResNet-164
original Residual Unit [1] | Fig. 4(a) 6.61 5.93
BN after addition Fig. 4(b) 8.17 6.50
ReLU before addition Fig. 4(c) 7.84 6.14
ReLU-only pre-activation | Fig. 4(d) 6.71 5.91
full pre-activation Fig. 4(e) 6.37 5.46
1 Xy X 1 Xy
\
[ weight ] [ weight ] ReLU BN
BlN BN BlN ReLU
RelU ReLU RelU BIJ
[ weight_| [ weight | RelU ElN
}
BN BN ReLU
addition BN RelU BN
e
RelU ReLU [ addition ] [Caddition ] addition
[ ) ¥ ¥
Xji1 X1 Xi+1 Xp1 Xpe1
L. (b) BN after (c) ReLLU before (d) ReLU-only Lo
(a) original addition addition pre-activation (e) full pre-activation

Prof. LI Hoi
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Further investigation on residual block design

@ BN after activation: The BN layer alters the signal that passes through
the shortcut and impedes information propagation

o ReLU before addition: Only non-negative output from F(x), while a
good residual function should take values in (—oo, 00)

o Post-activation or pre-activation? Activation only affects the F path.

o Optimization is further eased because f is an identity mapping
o Including BN in pre-activation improves regularization of the models

o Pre-activation reduces overfitting (larger training loss but less test
error). Presumably caused by BN's regularization effect. In the
original design, although BN normalizes the information, it is soon
added to the shortcut and the merged signal is not normalized

@ However, the searched design in ECCV paper was not widely used. People
find it have marginal influence to the final performance

@ However, it is an important information that the position of normalization
and normalization type actually affects the networks’ final performances
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Inception-v4 model

Softmax ot 100

i

Dropout (keep 0.8) ot 5%

Avarage Pooling  ousec 15
Filter concat
///// —_ —
— 3x1 Conv 1x3 Conv.
(il @amy \ (256) (256)
(256) -
ReductionB  oupus swasas pEemm  E— _
(256) (256) 3x1 Conv
! 1x1 Conv ©12)
(256) i
7XINCPHONB i s Py
(448)
I Avg Pooling i
Reduction-A  out neircio — 11133)nv
4XInception-A  ousue ssascm Filter concat
Stem Zoom-in description of Inception-C block.
re—
T Compared with the original GoogleNet, it has more
Input (299x299x3)  zea0s convolut:or} outputs with smaller filter size before feature
concatenation.

Inception-v4 network
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Roadmap of Network Structure

arXiv2016

Inception-ResNet model
C Szegedy etal.

GoogleNet -> Inception ->Inception_vé

Top-5: 3.1
CVPR 2016
Residual Network
K. Heetal
VGG -> PReLU (20 layers) -> ResNet (269 layers)
Top-5: 4.49
ICLR 2015, CVPR 2015
VGG, GoogleNet
K. Simonyan; C. Szegedy
Classification top-5 error: 9.33, 9.15
2012 - 2014

Overfeat, Clarifi, Net-in-Net, etc.
Variants of AlexNet

NIPS 2012
AlexNet
A. Krizheusky et al

Milestone. First time to apply
CNN in large-scale dataset (top-5: 15.3).
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@ We know that the residual network uses skip connection to model residual
learning

x = Fi(xi—1) +x11

@ In DenseNet architecture, the key idea is that the connectivity can be
represented by concatenation of different features from different layers

x; = Hj(concat(xo, X1, ...,Xi—1)

@ Limitation: it would not be possible to concatenate the feature maps if the
size of feature maps is different

@ To be able to perform the concatenation operation, we need to make sure
that the size of the feature maps that we are concatenating is the same

@ To design the DenseNet, only feature maps of the same size are densely
connected with concatenation
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@ The network is divided into multiple densely connected blocks (dense
blocks). Inside dense blocks, the feature map size remains the same

Input
Prediction
Dense Block 1 Dense Block 2 Dense Block 3

i ez i e e ]

@ Convolution + Pooling outside dense blocks: a bath normalization layer,
1 x 1 convolution, 2 X 2 averge pooling (stride 2)

9
g
8|
£
5

Jeouny

@ Within each dense block, each layer’s output is connected to all follow-up
layers' input

DENSEBLOCK ARCHITECTURE

= _
f Ly 3 d
] % Lhver o — | et - Uhekr [
| 4 Vo ¥

)INPW MALE )
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DenseNet

@ For ImageNet classification, DenseNet architectures are generally divided
into 4 dense blocks

Layers Output Size DenseNet-121 | DenseNet-169 | DenseNet-201 | DenseNet-264
Convolution 112 112 7 x 7 conv, stride 2
Pooling 56 % 56 3 x 3 max pool, stride 2
Dense Block {lxlconv] ‘ [leconv} ‘ lxlconv] | [lx]con\f}
56 x 56 x
(1) 3 x 3 conv 3 % 3 conv 3 x 3 conv 3 x 3 conv
Transition Layer | 56 x 56 1 5 1 conv
(1) 28 x 28 2 x 2 average pool, stride 2
Dense Block 1% 1 conv 1% 1 conv 1 1 conv 1% 1 conv
2) 228 {3)(3:0"\'] 2 [3x}c0nv}x 3x3€0nv]xu|[3x3con\f}xn
Transition Layer 28 x 28 L x 1 conv
2) 14 % 14 2 ¢ 2 average pool, stride 2
Dense Block 1 % 1 conv 1 3 1 conv 1% 1 conv 1% 1 cony
(3) 14 {3x3mnv] ‘[3x3cunv} 3x3cunv]X4S|[3x3conv}xm
Transition Layer 14 % 14 1 % 1 conv
(3) Tx7 2 x 2 average pool, stride 2
Dense Block %7 [lxlccnv] H:leconv} {leconv] |[lxlconv} .
(4) 3 x 3 conv 3 % 3 conv 3 % 3 conv 3 x 3 conv
Classification 1x1 7 x 7 global average pool
Layer 1000D fully-connected, softmax

@ The DenseNet-121 has [6, 12, 24, 16] layers in the four dense blocks
whereas DenseNet-169 has [6, 12, 32, 32] layers in the four blocks
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Model architecture - ResNeXt

@ ResNeXt block

} Zsfrdm o a Jn - 3§§—_din
. i—— . ] —
256, 1x1,4 ‘ ‘ 256, 1x1,4 \mm‘ 256, 1x1,4 ‘ I 256,1x1.4 ‘ ‘ 256, 1x1, 4 mmﬁ b | 256, 1x1,128 \\
paths paths r3 \
4334 H 43x34 ‘ l 43x34 ‘ | 4.33,4 ‘ 4,3x3,4 4,334 ‘ 128.3,128 \
- group =32
4,1%1,256 ‘ ‘ 4,1x1, 256 ‘ ‘ 4,1x1,256 ‘ L °°"°a‘e"a' | |
}+ 128, 1x1,256 V4 128, 111,256 /r’
% /,/’ - * </
(op— \» e (u—
" 256-d out ~ 256-d out ~ 256-d out
(a) (b) (©)

Figure: (a) ResNeXt block. (b) Inception-ResNet block. (c) Residual + Grouped
Convolution.

@ Splitting: the input feature maps are transformed to a series of
low-dimensional feature maps with 1 x 1 convolutions

@ Transforming: the low-dimensional representation is transformed with
efficient 3 x 3 convolutions to capture spatial context

o Aggregating: Convert back to high-dimensional feature maps with 1 x 1
convolutions and perform feature addition
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Model architecture - ResNeXt

@ Results of ImageNet classification

Detailed Architecture of ResNet-50 and ResNeXt-50 (32x4d)
Number of Parameters (Proportional to FLOPs)

stage | output ResNet-50 ResNeX1-50 (32 4d)
convl| 112x112 7x7. 64, stride 2 Tx7. 64, stride 2 C(256-d+3-3-d-d+d-256)
3% 3 max stride 2 3% 3 ma . stride 2 . N P 2
33 max pool, stride Jramax pool. stride Different settings to maintain similar complexity
I I Ix1.64 Ix1.128
comve) see Ixd 61 |x3 3x3,128,C=32 | x3 Cardnality © 2 1§ ¢
11,256 1x1.256 width of bottleneck d | 64 40 24 14 4
3 g L — width of groupconv. | 64 80 96 112 128
1x1, 128 1x1,256 - - T
conv3| 28x28 3x3,128 | x4 3%3,256, C'=32 | x4 similar
1x1,512 1x1,512 setting top-1 error (%)
1%1.256 [ 1x1.512 ResNet-50 1 x 64d 239
convd| 14x14 3x3,256 | x6 3x3,512,0=32 | x6 ResNeXt-50 2 x 40d 23.0
11,1024 1x1,1024 ResNeXt-50 4 % 24d 226
1%1.512 1%1. 1024 ResNeXt-50 8 x 14d 223
convs| 77 3%3.512 x3 I3, 1024, C=32 | x3 ResNeXt-50 32 x 4d 22.2
11,2048 11,2048 ResNet-101 1 x 64d 220
Il global average pool global average pool ResNeXt-101 2 x 40d 21.7
x .
1000-d fe. softmax 1000-d fe, sofimax ResNeXt-101 4% 24d 214
# params. 25.5%10° 25.0%10° ResNeXt-101 8 x 14d 21.3
FLOPs 4.1x107 4.2x107 ResNeXt-101 32 x4d 21.2
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Model architecture - MobileNet-v1

@ All previous networks focus on improving classification accuracy. There are
another direction of reseasrch that focuses on maximizing the efficiency

o Depthwise separable convolution: a depthwise convolution followed by a
pointwise (1 x 1) convolution

Depthwise Convolution

RS ™
. b
= Pointwise Convolution
T\i DKX%NOWX 1x1 conv
== =
L
>
~U

@ There are 5 input feature dimensions. We will have 5 Dy X Dy spatial
convolutions

@ The follow-up 1 x 1 convolution change the output. feature dimension
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Model architecture - MobileNet-v1

@ M - Input feature channels

@ N - Output feature channels

@ Dy, - Kernel size (side length)

o Dy - Feature map size (side length)

@ The computation cost of standard convolution is

Dy-Dyp-M-N-Dfr-Dp

The computational cost of depthwise convolution is

Dk -Dgk-M-Dp-Dp+M-N-Dp-Dp
@ The computational cost reduction is
Dk -Dgk-M-Dp-Drp+M-N-Dpf-Dp
Dk -Dg-M-N-Dp-Dp
1,1
N D%

@ When Dy, x Dy is 3 x 3, 8-9 times less computation can be achieved
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Model architecture - MobileNet-v1

@ MobileNet block

| 3x3 Conv | |3x3 Depthwise Convl
I I

e ] [ ]
I I

[ RelU | ReLU |

@ MobileNet-v1

Table 1. MobileNet Body Architecture

Type / Stride Filter Shape Input Size
Conv /52 3x3x3x32 224 %224 %3
Conv dw / s1 3% 3x32dw 112 % 112 x 32
Conv /51 Ix1x32x64 112 x 112 x 32
Conv dw /52 3 % 3 x 64 dw 112 % 112 x 64
Conv /s1 1x 1 x64x128 56 x 56 x 64
Conv dw / s1 3 x 3 x 128dw 56 x 56 x 128
Conv /51 1x1x128 x 128 56 x 56 x 128
Cony dw /52 3x 3 x128dw 56 x 56 x 128
Conv /sl 1 x 1 x 128 x 256 28 x 28 x 128
Conv dw /51 3 x 3 x 256 dw 28 x 28 x 256
Conv /51 1 x 1 x 256 x 256 28 x 28 x 256
Conv dw /52 3 % 3 x 256 dw 28 x 28 x 256
Conv /51 1x 1 x 256 x 512 14 x 14 % 256
stonvdesl 3x3x512dw 14 % 14 x 512
Conv /sl 1x1x512x 512 14 x 14 x 512
Conv dw / 52 3 x 3 x512dw 14 x 14 x 512
Conv /51 Ix1x512x1024 | 7x7x512
Cony dw /52 3 x 3 x 1024 dw 7 x T x1024
Cony /51 1x1x1024x1024 | 7x7x1024
Avg Pool /51 Pool 7 x 7 7x 7 x 1024
FC/sl1 1024 x 1000 1x 1 x1024
Softmax /sl Classifier 1 x 1 x 1000
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Model architecture - MobileNet-v1

o MobileNet only got 1% loss in accuracy, but the Mult-Adds and
parameters can be reduced tremendously

Table 4. Depthwise Separable vs Full Convolution MobileNet

Model ImageNet Million Million
Accuracy Mult-Adds  Parameters
Conv MobileNet 1. 7% 4866 293
MobileNet 70.6% 569 4.2
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Model architecture - MobileNet-v2

@ The change of basic conv block

T G [ Add ] cony 1<, Unear |

Dwise 3x3, Relué

Duise 3x3,
stride=2, Relus

Dwise 3x3,
stride=s, Relu6

t

Conv 1x1, Relus
Conv 1x1, Relus

Cinput) > Cw>
Stride=1 block Stride=2 block
MobileNetv1

MobileNetv2

@ ReLUS6 is introduced as min(max(z,0), 6)

ReLU6 activation function

6
4
2
5
2 of
3
-2
-4
-6
-6 -4 -2 0 2 4 6
Input
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Model architecture - MobileNet-v2

@ Network architecture

Input | Operator [t] ¢ |nls
2242 % 3 conv2d - 032 |12
1122 x 32 bottleneck | 1| 16 |1 |1
1122 x 16 bottleneck | 6 | 24 |2 |2
562 x 24 bottleneck |6 | 32 |3 ]2
282 % 32 bottleneck | 6 | 64 |4 |2
14% x 64 bottleneck | 6 | 96 |3 |1
142 < 96 bottleneck | 6 | 160 | 3 | 2
72 % 160 bottleneck | 6 | 320 | 1 |1
72 % 320 conv2d Ix1 | - | 1280 | 1 | 1
7% % 1280 | avepool 7x7 | - - 1] -

1x1x1280 | conv2d Ix1 | - k

@ Results
Network | Top | | Params MAdds | CPU
MobileNetV1 70.6 4.2M 575M 113ms
ShuffleNet (1.5) 71.5 3.4M 292M -
ShuffleNet (x2) 73.7 5.4M 524M -
NasNet-A 74.0 5.3M 564M 183ms

MobileNetV2 72.0 3.4M 300M | 75ms
MobileNetV2 (1.4) | 74.7 6.9M 585M 143ms
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EfficientNet

o Before the EfficientNets came along, the most common way to scale up
ConvNets was either by one of three dimensions - depth (number of
layers), width (number of channels) or image resolution (image size)

o EfficientNets perform Compound Scaling - that is, balance all the
dimensions of the network (width, depth and resolution) by uniformly
scaling each one of them using a constant ratio

@ Scale all three dimensions while maintaining a balance between all
dimensions of the network

@ Actually, Compound Scaling only works on existing MobileNet and ResNet

e----wider o

—_—
E— —_—
#channels % —_
i eata | i wider B E T 3
| ==
deeper
+~ higher higher
'} resolution HXW i__resolution i ! resolution
(a) baseline (b) width scaiing (c) depth scaling (d) resolution scaling (&) compound scaling
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EfficientNet

@ it is critical to have a good baseline network. The authors designed a
mobile-size baseline network called EfficientNet-B0, that works by using a
multi-objective neural architecture that optimizes accuracy and FLOPS.
The model was inspired by Mnas-Net (an automatical neural architecture
search method) and has the following architecture

|
|

pR— 4 = = = 2 = 2 = o o o r
= & & ] & % 3 z [ 2 2 T = T o o o o 2
B TlalSiolile|dlelZlelZlelZle|Z(alZle|d vl el ol2a|2[«2 a3
TIRE| 2R 2R S IR I R T T L L A
B I I IR R I AR R AR AR R A I R AR R R
Blas|gn|e|® g|B|g|S|g Blel®|g|8|g 8T g2 g R g|f|e|S|g||g|f|e2
= Er™ Er™ E ™ E[H Er™ E[™ Ef™ Er™ EI™ E™ E™ Ef™ E[™ 2= EI~E™
5 5 5 S 5 s 5 5 s 5 5 5 5 G s 5 1
Ii] o [ o o Q o 5] Q o 0 [ o Q Q o a
] [ ] ] @ ] ] @ -] o o o @ @ ] @
H = = = = = = = = = = = = = = =

@ The building block of this architecture is the mobile inverted bottleneck
MBConv that is also called inverted residual block with an additional SE
(Squeeze and Excitation) block.
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Squeeze-and-Excitation Block and MBConv

@ Sigmoid function is used to scale different channels differently

(1x1xC) Compute (1x1xC)
‘Squeeze’
(HxWxC)
(HXWxC) //////
*
“Excite’
CNN Feature Output

Feature Map

o EfficientNetv2 uses Fused-MBConv in early stages

MBConv Fused-MBConv
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Scaling up EfficientNetB0-B7

@ Step 1: Fix ¢ = 1, assuming twice more resources available, and do a
small grid search of «, 3, v according to the network performance. In
particular, we find the best ratios for EfficientNet-B0O are a = 1.2, 8 = 1.1,
~ = 1.15, under constraint of a.- 82 - 4% ~ 2

@ FLOPs of a regular convolution operator is proportional to d, w?, r2

(dominating in CNNs)

o Constrain « - 82 - 4% & 2 such that for any ¢, the total FLOPs will
approximately increase by 2

depth: d = a?
width: w = 3%
]

resolution: r =~y
st. a8 4%~2
a>l,B>1,y>1

@ Step 2: We then fix «, 3, v as constants and scale up baseline network
with different ¢, to obtain EfficientNet-B1 to B7

Prof. LI Hongsheng ELEG5491: Introduction to Deep Learning



EfficientNet Results

Model | Top-1 Acc.  Top-5 Acc. || #Params Ratio-to-EfficientNet || #FLOPs  Ratio-to-EfficientNet
EfficientNet-B0 71.1% 93.3% 5.3M Ix 0.39B 1x
ResNet-50 (He et al., 2016) 76.0% 93.0% 26M 4.9% 4.1B 11x
DenseNet-169 (Huang et al., 2017) 76.2% 93.2% 14M 2.6x 3.5B 8.9x
EfficientNet-B1 79.1% 94.4% 7.8M Ix 0.70B 1x
ResNet-152 (He et al., 2016) 77.8% 93.8% 60M 7.6x 11B 16x
DenseNet-264 (Huang et al., 2017) 77.9% 93.9% 34M 4.3x 6.0B 8.6x
Inception-v3 (Szegedy et al., 2016) 78.8% 94.4% 24M 3.0x 5.7B 8.1x
Xeception (Chollet, 2017) 79.0% 94.5% 23M 3.0x 8.4B 12x
EfficientNet-B2 80.1% 94.9% 9.2M Ix 1.0B 1x
Inception-v4 (Szegedy et al., 2017) 80.0% 95.0% 48M 5.2x 13B 13x
Inception-resnet-v2 (Szegedy et al., 2017) 80.1% 95.1% 56M 6.1x 13B 13x
EfficientNet-B3 81.6% 95.7% 12M Ix 1.8B 1x
ResNeXt-101 (Xie et al., 2017) 80.9% 95.6% 84M 7.0x 32B 18x
PolyNet (Zhang et al., 2017) 81.3% 95.8% 92M 7.7% 35B 19x
EfficientNet-B4 82.9% 96.4% 19M Ix 4.2B 1x
SENet (Hu et al., 2018) 82.7% 96.2% 146M 7.7% 42B 10x
NASNet-A (Zoph et al., 2018) 82.7% 96.2% 89M 4.7x 24B 5.7x
AmoebaNet-A (Real et al., 2019) 82.8% 96.1% 8TM 4.6x 23B 5.5x
PNASNet (Liu et al., 2018) 82.9% 96.2% 86M 4.5x 23B 6.0x
EfficientNet-B5 83.6% 96.7% 30M Ix 9.9B 1x
AmoebaNet-C (Cubuk et al., 2019) 83.5% 96.5% 155M 5.2x 41B 4.1x
EfficientNet-B6 | 84.0% 96.8% | 43M Ix | 198 1x

EfficientNet-B7 84.3% 97.0% 66M Ix 378 Ix
GPipe (Huang et al., 2018) 84.3% 97.0% 55TM 8.4x

roduction to Deep Learnii



References

@ A. Krizhevsky, L. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” Proc. NIPS, 2012.

@ M. Ranzato, “Neural Networks,” tutorial at CVPR 2013.

o K. Chatfield, K. Simonyan, A. Vadaldi, and A. Zisserman, “Return of the
Devil in the Details: Delving Deep into Convolutional Networks,” BMVC
2014.

@ P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun,
“Overfeat: Integrated recognition, localization and detection using
convolutional networks,” In Proc. Int'l Conf. Learning Representations,
2014.

o K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv:1409.1556, 2014.

@ M. Lin, Q.. Chen, and S. Yan, “Network in network,” arXiv:1312.4400v3,
2013.

o C. Szegedy, W. Liu, Y. Jia, P. Sermanet, D. Anguelov, D. Erhan, V.

Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
arXiv:1409.4842, 2014.

Prof. LI Hongsheng ELEG5491: Introduction to Deep Learning



References

@ Deep Residual Learning for Image Recognition. K. He, et al. CVPR 2016.
Best paper.

o Highway and Residual Networks learn Unrolled lterative Estimation, ICLR
2017.

o Identity Mappings in Deep Residual Networks. K. He, et al. ECCV 2016.
Extension discussion of ResNet.

@ Deep Networks with Stochastic Depth. G. Huang, et al. ECCV 2016

@ Unsupervised Domain Adaptation with Residual Transfer Networks. NIPS
2016.

o Wide Residual Networks. BMVC 2016.

@ Residual LSTM: Design of a Deep Recurrent Architecture for Distant
Speech Recognition. https://arxiv.org/abs/1701.03360.

@ Szegedy, Christian, et al. Inception-v4, inception-resnet and the impact of
residual connections on learning. The AAAI Conference on Artificial
Intelligence, 2017.

@ Sandler, Mark, et al. Mobilenetv2: Inverted residuals and linear
bottlenecks. The IEEE conference on computer vision and pattern
recognition, 2018.

Prof. LI Hongsheng ELEG5491: Introduction to Deep Learning


https://arxiv.org/abs/1701.03360

