
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
1/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

ELEG 5491: Introduction to Deep Learning
Optimization of Deep Neural Networks

Prof. LI Hongsheng

Office: SHB 428
e-mail: hsli@ee.cuhk.edu.hk

web: https://dl.ee.cuhk.edu.hk
Department of Electronic Engineering
The Chinese University of Hong Kong

February 2023

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
2/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Outline

1 Gradient-based Optimization Basics

2 Optimization of training deep neural networks
1st-order optimization methods
2nd-order optimization methods

3 Training Techniques
Vanishing and Exploding Gradients
Weight initialization
Training data Preparation & Data augmentation
Learning Rate Schedules

4 Multi-GPU Training
Basics
Data parallelism and model parallelism

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
3/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

The objective function and gradients

Given a general input feature vector x, the function f to be learned
generates an output

ŷ = f(x; θ)

and compares the output with ground-truth y

The loss function J considering all training samples can be defined as

J(θ;D) =
∑

all (x(i),y(i))∈D

Difference
(
f(x(i)), y(i)

)
where D = {(x(1), y(1)), . . . , (x(m), y(m))} denotes the training set
Notation

Objective function (loss function) J : Rl → R (assuming the network has l
parameters in total)

Gradient vector ∇J(θ) =
[

∂
∂θ1

J(θ), . . . , ∂
∂θl

J(θ)
]T

∈ Rl

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
4/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Gradient descent

We aim at minimizing the cost function on the training set

θ∗ = argmin
θ

J(θ;D)

where D = {(x(1), y(1)), . . . , (x(m), y(m))} denotes the training set
The plain gradient descent updates the function parameters θ as

θ = θ − η∇J(θ)

where θ(t) denotes parameters of the function J at iteration t, and α is
the manually set learning rate (a hyper-parameter)
The gradient descent can only find a local optimum of the objective
function

Algorithm 1: Plain gradient descent
Input: initial θ(0), gradient vector ∇J(θ), learning rate α, tolerance ω
|∆θ| ← ∞ ;
while |∆θ| < ω for more than 10 iterations do

∆θ ← −η∇J(θ);
θ ← θ + ∆θ;

end

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
5/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Mini-batch Stochastic Gradient Descent

Obtaining ∇J(θ) requires evaluating the neural network f(x) for each
training sample over the entire train set, which is too time-consuming if
the number of training samples is too large
Mini-batch stochastic gradient descent estimates the gradient vector of
J(θ) by using a mini-batch of training sample at each iteration

J(θ,D) =
∑

(x(i),y(i))∈B

Difference
(
f(x(i)), y(i)

)
where B is a mini-batch of the training set, which can be sequentially or
randomly obtained from the train set D
Algorithm 2: Mini-batch stochastic gradient descent
Input: initial θ(0), gradient vector ∇J(θ), learning rate α, tolerance ω
|∆θ| ← ∞ ;
while The iteration number is below than a threshold do

Randomly or sequentially sample a mini-batch of samples B from the train set D;
Estimate ∇J(θ) with the mini-batch of samples B;
θ ← θ − η∇J(θ);

end

Much faster but the estimated gradient vector might be noisy
Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
6/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Mini-batch Stochastic Gradient descent

General guidelines on forming mini-batches
In general, larger mini-batches would results in better results than small
mini-batches
The use of BN layers requires mini-batches of at least a batch size of 8 or 16
The feature and label variations within each mini-batch should be
maximized as much as possible

Comparison of different gradient descent methods

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
7/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Momentum in Gradient-based Optimization

One can store the parameter update vector ∆θ(t−1) at the previous
iteration
After calculating the negative gradient vector ∇Jθ(θ

(t)) at the current
iteration t
The parameter update vector at current iteration t is calculated as

∆θ(t) = momentum ·∆θ(t−1) + (1−momentum) · ∇Jθ(θ
(t))

∆θ(0) = 0

where the hyper-parameter momentum is generally set as 0.9
The momentum can lead to faster convergence and prevent sudden change
of optimization direction

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
8/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Weight Decay in Gradient-based Optimization

In general, the function family that neural networks can represent is huge
and NN has power capability of overfitting small-scale dataset
Given multiple sets of parameters that lead to the same training error (or
loss), one would favor the set of parameters that insensitive to input
feature vectors’ variations
We can minimize the L2 norm (magnitude) of the parameter vector ∥θ∥2
to achieve the goal, which is used a regularization term
The objective (loss) function becomes

J(θ;D) =
∑

all (x(i),y(i))∈B

Difference
(
f(x(i)), y(i)

)
+

λ

2
∥θ∥22

where λ is a hyper-parameter controlling the influence of the regularization
term
With only regularization term, its updating with negative gradient of the
above objective function is

θ(t+1) := θ(t) − η∇Jθ(θ
(t))

Some implementations only apply weight decay to linear transformation
weights but not bias. PyTorch applies weight decay to both weights and
bias by default Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
9/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

SGD with Decoupled Weight Decay

J can be defined as a plain loss function without L2 regularization and
SGD with weight decay can be defined as

θ(t+1) := θ(t) − η · ∇Jθ(θ
(t))− η · λ · θ(t)

Note that the negative gradients above, −∇Jθ, are computed from the
plain loss function
If we use the above decouped weight decay formula, we avoid add more
computations by modifying the loss (the other benefit will be explained in
AdamW)

SGD with decoupled weight decay and momentum is implemented as
∆θ(t+1) = momentum ·∆θ(t) + (1−momentum)∇Jθ(θ

(t))

θ(t+1) = θ(t) − η ·∆θ(t+1) − η · λ · θ(t)

This update scheme is actually different from using the loss function with
L2 regularization

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
10/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Brief Introduction to 2nd-order optimization

Hessian (symmetric matrix) of the objective function J

∇2J(x) = H =

∂2

∂θ1∂θ1
J(θ) ∂2

∂θ1
∂θ2

J(θ) · · · ∂2

∂θ1
∂θn

J(θ)

∂2

∂θ1
∂θ2

J(θ)
...

...
...

∂2

∂θn∂θ1
J(θ) · · · · · · ∂2

∂θn∂θn
J(θ)

 ∈ Rn×n

Newton’s method centered around a quadratic approximation of f for
points near x(t)

J(θ +∆θ) = J(θ) + ∆θT∇J(θ) + 1

2
∆θT (∇2J(θ))∆θ

Without loss of generality, we write θ(t+1) = θ(t) +∆θ and define h(t) as a
function of ∆θ

h(t)(∆θ) = J(θ(t)) + ∆θT g(t) +
1

2
∆θTH(t)∆θ

where g(t) and H(t) denote the gradient and Hessian at θ(t)

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
11/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Brief Introduction to 2nd-order optimization
We choose ∆θ to minimize the local quadratic approximation of J at θ(t)

Differentiating h(t) w.r.t. ∆θ yields
∂h(t)(∆θ)

∂∆θ
= g(t) +H(t)∆θ

Setting the derivative to zero yields
∆θ = (H(t))−1g(t)

Suggesting that −(H(t))−1g(t) is a good direction to update θ(t)

2nd-order iterative algorithm
For t = 1, 2, . . .

Compute g(t) and (H(t))−1 for θ(t)
d = (H(t))−1g(t)

η = minη≥0 J(θ
(t) − ηd)

θ(t+1) ← θ(t) − αd

The computation of α can be obtained by any line search algorithm. The
simplest is backtracking line search – trying smaller and smaller α until the
function is small enough

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
12/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Advantage of 2nd-order optimization

Gradient descent fails to exploit the curvature information contained in Hessian. Here
we use gradient descent on a quadratic function whose Hessian matrix has condition
number 5. The red lines indicate the path followed by gradient descent. This very
elongated quadratic function resembles a long canyon. Gradient descent wastes time
repeatedly descending canyon walls, because they are the steepest feature. Because
the learning rate is somewhat too large, it has a tendency to overshoot the bottom of
the function and thus needs to descend the opposite canyon wall on the next iteration.
The large positive eigenvalue of the Hessian corresponding to the eigenvector pointed
in this direction indicates that this directional derivative is rapidly increasing, so an
optimization algorithm based on the Hessian could predict that the steepest direction
is not actually a promising search direction in this context.

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
13/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

1st-order optimization methods
2nd-order optimization methods

Resilient Propagation (Rprop)

RProp is a popular gradient descent algorithm that only uses the signs of
gradients to compute updates
Let η

(t)
i denote the learning rate for the ith weight at the tth iteration

Rprop updates parameters as

θ
(t)
i = θ

(t)
i − η

(t)
i sgn

(
∂J

∂θ
(t)
i

)

The learning rate η
(t)
i is dynamically adapted for each weight θi depending

on its gradient

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
14/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

1st-order optimization methods
2nd-order optimization methods

Resilient Propagation (Rprop)

For each weight, when its gradient sign of the current and previous
iterations are them same, we increase the learning rate as this seems to be
a good direction
If the gradient sign changes, it denotes that the parameter just jumps over
an optimum. We decrease the learning rate to avoid jumping over the
optimum again

η
(t)
i =

min(αη

(t−1)
i , ηmax) if ∂J

∂θ(t)
∂J

∂θ(t−1) > 0,

max(βη
(t−1)
i , ηmin) if ∂J

∂θ(t)
∂J

∂θ(t−1) < 0,

η
(t−1)
i otherwise.

α > 1 > β scale the learning rate. Empirically, α = 1.2, β = 0.5
The learning rate is also clipped to avoid it becoming too large or small

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
15/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

1st-order optimization methods
2nd-order optimization methods

Adagrad

The basic stochastic gradient descent (SGD) optimization used the same
learning rate for all parameters θ

Adagrad uses a different learning rate for every parameter θi
Denote g(t) as the gradient and g

(t)
i as the partial derivative of the loss

function J w.r.t. the parameter θi at iteration t

The SGD update for parameter θi
θ
(t+1)
i = θ

(t)
i −

η√
G

(t)
ii + ϵ

g
(t)
i

η is the overall learning rate and G(t) ∈ Rn×n is a diagonal matrix where
each diagonal G(t)

ii is the sum of squares of gradients w.r.t. θi up to
iteration t

Intuitively, if each parameter θi is updated for a too large accumulated
amount, its learning rate gradually becomes smaller and smaller
Weakness: the denominator always increases, causing the learning rate to
shrink and eventually become infinitely small

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
16/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

1st-order optimization methods
2nd-order optimization methods

Adadelta

Instead of accumulating all past gradients, Adadelta restricts the time
window of accumulated past gradients to fixed size w

The running average E[(g(t))2] at iteration t is calculated as
E[g2](t) = γE[g2](t−1) + (1− γ)(g(t))2, with E[g2](0) = 0

γ can be set as 0.9 as a common practice
The units (magnitudes) of different parameters might not match. The
authors observed that, in gradient methods, ∇f(x) ∝ 1

units of θ
Another exponentially decaying averaging normalization term is defined as

E
[
∆θ2

](t)
= γE

[
∆θ2

](t−1)
+ (1− γ)(∆θ2)(t), with E[∆θ2](0) = 0

The Adadelta update rule:

∆θ(t) =

√
E [∆θ2](t) + ϵ√
E[g2](t) + ϵ

g(t)

θ(t+1) = θ(t) −∆θ(t)

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
17/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

1st-order optimization methods
2nd-order optimization methods

RMSprop

RMSprop is developed independently around the same time as Adadelta
The update rule is

E
[
g2
](t)

= 0.9E
[
g2
](t−1)

+ 0.1(g(t))2 with E[g2](0) = 0

θ(t+1) = θ(t) − η√
E [g2](t) + ϵ

g(t)

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
18/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

1st-order optimization methods
2nd-order optimization methods

Adam

Adaptive Moment Estimation (Adam) also adaptively tunes the learning
rate of each parameter
Adam keeps exponentially decaying average of past squared gradients v(t)

and an exponentially decaying average of past gradients m(t)

m(t) = β1m
(t−1) + (1− β1) g

(t), β1 = 0.9 (by default)

v(t) = β2v
(t−1) + (1− β2) (g

(t))2 β2 = 0.999 (by default)

m(0) and v(0) are initialized as vectors of all 0’s and would therefore be
biased towards zero, especially during the initial iterations and when β1

and β2 are small
They are further counteracted:

m̂(t) =
m(t)

1− β1
, v̂(t) =

v(t)

1− β2

The Adam update rule:
θ(t+1) = θ(t) − η√

v̂(t) + ϵ
m̂(t)

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
19/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

1st-order optimization methods
2nd-order optimization methods

AdamW: Adam with (Decoupled) Weight Decay

Adam with decoupled weight decay update (AdamW) rule:

θ(t+1) = θ(t) − η√
v̂(t) + ϵ

m̂(t) − η · λ · θ(t)

Problem of Adam: Note that if the L2 regularization is used in the
objective function, the corresponding update rule (after expansion and
ignoreˆ) becomes

θ(t+1) = θ(t) − η
β1m

(t) + (1− β1)
(
∇Jθ

(
θ(t)
)
+ λθ(t)

)
√
v(t) + ϵ

Weight decay is influenced by
√
v(t): if the gradient of a certain weight is

large, weight decay is not as effective as the update rule above
This was the reason why Adam wasn’t so successful when it was first
released

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
20/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

1st-order optimization methods
2nd-order optimization methods

Quasi-Newton Methods

θ of the deep neural networks are generally of very high dimension
Evaluation of the Hessian matrix H might be computationally infeasible in
most scenarios
We can approximate H = ∇2J(θ) from the data of the previous iterations
A typical quasi-Newton iteration is

θ(t+1) = θ(t) + η(t)d(t), where d(t) = −B(t)∇J(θ(t))

α(t) is usually chosen by a line search
B(t) is a positive definite matrix chosen so that the direction d(t) tends to
approximate Newton’s direction
Two successive iterates θ(t) and θ(t+1) with the gradients g(t) and g(t+1)

contain curvature (Hessian) information
g(t+1) − g(t) ≈ H(t+1)(θ(t+1) − θ(t))

This is known as the secant equation or the quasi-Newton condition
We choose B(t+1) to satisfy

B(t+1)q(t) = p(t), where p(t) = θ(t+1) − θ(t), q(t) = g(t+1) − g(t)

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
21/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

1st-order optimization methods
2nd-order optimization methods

BFGS and Limited-memory BFGS

Suppose that at every iteration we update the matrix B(t+1) by taking the
matrix B(t) and adding a “correction” matrix C(t)

(B(t) + C(t))q(t) = p(t) ⇒ C(t)q(t) = p(t) −B(t)q(t)

The most popular choice is the Broyden family

CB(ξ) =
ppT

pT q
− BqqT B

qT Bq
+ ξτvvT , where v =

p

pT q
− Bq

τ
, τ = qT Bq

ξ ∈ [0, 1] and the above formula indeed satisfies the secant condition
Setting ξ = 1, we obtain the BFGS update

CBFGS = CB(1) =
ppT

pT q

[
1 +

qTBq

pT q

]
− BqpT + pqTB

pT q

L-BFGS (Limited-memory BFGS) further approximates BFGS using a
limited amount of memory

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
22/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Vanishing and Exploding Gradients
Weight initialization
Training data Preparation & Data augmentation
Learning Rate Schedules

Gradient vanishing refers to the problem that the gradients of lower layers
normally get smaller and smaller, gradually approaching zero, causing
gradient-based optimization method to never converge to the optimum
Gradient vanishing is most apparent (but can also observed for networks
with other activation functions) for networks with sigmoid (tanh)
activation functions
The gradient can be calculated as (below is not a strict formula)

∂J

∂y1
= σ(y2)′(W 1)Tσ(y2)′(W 2)Tσ(y3)′(W 3)Tσ(y4)′

∂J

∂y4

The maximum of σ′(x) ≈ 0.25. Multiplying the multiple < 1 values might
makes the gradients gradually smaller

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
23/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Vanishing and Exploding Gradients
Weight initialization
Training data Preparation & Data augmentation
Learning Rate Schedules

Gradient exploding refers to the gradients of lower layers become extremely
large. It is usually caused by too large values of W 1,W 2,W 3, . . .

Some solutions:
Batch normalization is a standard method for solving both the exploding
and the vanishing gradient problems
Gradient clipping clip the norm of ∇θJ by ϵ

g =

{
∇θJ, if ∥∇θJ∥ < ϵ,

ϵ · ∇θJ
∥∇θJ∥ , otherwise.

Long-short Term Memory for Recurrent Neural Networks
Residual connections to make the gradient back-propagated easier through
the network
Other activation functions: e.g., ReLU allows back-propagating gradients
easier
Weight initialization to reduce vanishing or exploding gradients

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
24/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Vanishing and Exploding Gradients
Weight initialization
Training data Preparation & Data augmentation
Learning Rate Schedules

Weight initialization
Gradient-based optimization methods require initial parameters/weights
The simplest initialization method is to initilize weights of all layers
following the same standard normal distribution or uniform distribution
However, if the weights are initialized improperly, it can lead to exploding
or vanishing weights and gradients: either the outputs of the network
explode to infinity, or they vanish to 0

Feature values of a 5-layer MLP with tanh function and with Gaussian random initialization [Xavier et al.]

Back-propagated gradients of a 5-layer MLP with tanh function and with Gaussian random initialization

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
25/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Vanishing and Exploding Gradients
Weight initialization
Training data Preparation & Data augmentation
Learning Rate Schedules

Analysis of forward response distribution

The forward computation of a fully-connected layer is formulated as

y = Wx+ b

where x× Ru, y, b ∈ Rd, W ∈ Ru×d

The overall objective of weight initialization: maintaining the same signal
magnitude across different layers

Var(yi) = Var(xj)

Assumptions:
W,x, b are independent of each other
The elements of W ∈ Ru×d, i.e., Wij are independent and identically
distributed (i.i.d.) and E[Wij] = 0

The elements of b ∈ Rd (i.e. bi) are initialized as all zeros so Var[bi] = 0

The elements of x ∈ Ru (i.e. xj) are i.i.d. and E[xj] = 0

Review: if X and Y are independent, we have

Var(X + Y) = Var(X) + Var(Y)

Var(XY) = Var(X)Var(Y) + (E[X])2 Var(Y) + Var(X)(E[Y])2

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
26/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Vanishing and Exploding Gradients
Weight initialization
Training data Preparation & Data augmentation
Learning Rate Schedules

Analysis of forward response distribution
The variance of {yi}di=1 is calculated as
Var (yi) = Var (Wix+ bi)

= Var

(
d∑

j=1

Wijxj + bi

)
= dVar (Wijxj)

= d
(
Var (Wi,j)Var (xj) + (E [Wi,j])

2 Var (xj) + Var (Wij) (E [xj])
2)

= d
(
Var (Wij)Var (xj) + (0)2 Var (xj) + Var (Wij) (E [xj])

2)
= dVar (Wij)Var(xj)

= dVar (Wi,j)
(
Var (xj) + (E [xj])

2) = dVar (Wij) (E
[
x2
j

]
− E[xj]

2 + E[xj]
2)

= dVar (Wij)E
[
x2
j

]
To achieve Var (yi) = Var (xj), we have dVar(Wij) = 1 and
Var(Wij) =

1
d

For normal random numbers, Wij ∼ N (0, 1/d)

For uniform random numbers, Wij ∼ U(−
√

3/d,
√

3/d)

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
27/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Vanishing and Exploding Gradients
Weight initialization
Training data Preparation & Data augmentation
Learning Rate Schedules

Analysis of backward response distribution

Forward: y = Wx+ b; Backward: ∂J

∂xj
= WT ∂J

∂yi

Objective: Var (∂J/∂x) = Var (∂J/∂y)

Assumptions:
∂J/∂y and W are independent of each other
∂J/∂yi are i.i.d. and E[∂J/∂yi] = 0

Wij are i.i.d. and E[Wij] = 0

The analysis is similar as before and we have

Var(∂J/∂xj) = uVar(Wij)Var(∂J/∂yi)

To ensure Var(∂J/∂x) = Var(∂J/∂y), we have uVar(Wij) = 1 and
Var(Wij) = 1/u

For normal random numbers, Wij ∼ N (0, 1/u)

For uniform random numbers, Wij ∼ U(−
√

3/u,
√

3/u)

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
28/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Vanishing and Exploding Gradients
Weight initialization
Training data Preparation & Data augmentation
Learning Rate Schedules

Xavier initialization

In general, u ̸= d. The harmonic mean is used for Var(Wij):

Var(Wij) =
2

d+ u

For normal random numbers, Wij ∼ N (0, 1/(d+ u))

For uniform random numbers, Wij ∼ U(−
√

6/(d+ u),
√

6/(d+ u))

However, Xavier initialization doesn’t consider any activation/non-linearity
function at all

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
29/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Vanishing and Exploding Gradients
Weight initialization
Training data Preparation & Data augmentation
Learning Rate Schedules

Kaiming initialization
The Kaiming initialization is similar but it considers ReLU activation
function ReLU(y) = ReLU(Wx+ b)

Follow the previous derivation, we have
Var(yi) = uVar(Wij)E[x2

j]

But we no longer have E[x2
j] = Var(xj) unless E[xj] = 0, because ReLU

outputs are non-negative
We can simplify the E[x2

j] term (we drop the subscript j but add a
layer-index superscript below)

E[(xl)2] =

∫ ∞

−∞
(xl)2P (xl)dxl

=

∫ ∞

−∞
max(0, yl−1)2P (yl−1)dyl−1

=

∫ ∞

0

(yl−1)2P (yl−1)dyl−1

= 0.5

∫ ∞

−∞
(yl−1)2P (yl−1)dyl−1

= 0.5Var(yl−1)

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
30/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Vanishing and Exploding Gradients
Weight initialization
Training data Preparation & Data augmentation
Learning Rate Schedules

Kaiming initialization

Let nl denotes the number of output units at layer l
The variance of units can be obtained as

Var(yl) = 0.5 · nl ·Var(W l) ·Var(yl−1)

Combining layer 1 to L

Var(yL) = Var
(
y1)(L∏

l=2

nl

2
Var

(
W l
))

and we will make the later term to remain a constant 1 to prevent
vanishing or exploding gradients

nl

2
Var(W l) = 1, ∀l

The weights at layer l should be initialized to keep the forward variance
constant 1

W l
ij ∼ N

(
0,

2

nl

)
The formula for maintaining gradient variance constant 1 can be derived
similarly

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
31/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Vanishing and Exploding Gradients
Weight initialization
Training data Preparation & Data augmentation
Learning Rate Schedules

Data augmentation

If the training set is small, one can synthesize some training samples by
adding Gaussian noise to real training samples
Domain knowledge can be used to synthesize training samples. For
example, in image classification, more training images can be synthesized
by translation, scaling, and rotation.

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
32/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Vanishing and Exploding Gradients
Weight initialization
Training data Preparation & Data augmentation
Learning Rate Schedules

Data augmentation

Change the pixels without changing the
label
Train on transformed data
Very widely used in practice

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
33/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Vanishing and Exploding Gradients
Weight initialization
Training data Preparation & Data augmentation
Learning Rate Schedules

Data augmentation

Horizontal flipping

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
34/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Vanishing and Exploding Gradients
Weight initialization
Training data Preparation & Data augmentation
Learning Rate Schedules

Data augmentation

Random crops/scales
Training for image classification networks
(AlexNet/VGG/ResNet)

Pick random L in range [256, 480]

Resize training image, short side = L

Sample random 224× 224 patch

Testing: average a fixed set of crops
Resize image at 5 scales:
{224, 256, 384, 480, 640}
For each size, use ten 224× 224 crops: 4
corners + center + flips

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
35/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Vanishing and Exploding Gradients
Weight initialization
Training data Preparation & Data augmentation
Learning Rate Schedules

Data augmentation

Color jitter
Simple: randomly jitter contrast
Complex:

Apply PCA to all [R, G, B] pixels in training set
Sample a “color offset” along principal component directions
Add offset to all pixels of a training image

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
36/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Vanishing and Exploding Gradients
Weight initialization
Training data Preparation & Data augmentation
Learning Rate Schedules

Data augmentation

Get creative!
Random mix/combinations of :

Translation
Rotation
Stretching
shearing
lens distortions
etc.

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
37/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Vanishing and Exploding Gradients
Weight initialization
Training data Preparation & Data augmentation
Learning Rate Schedules

Normalizing input

If the dynamic range of one input feature is much larger than others,
during training, the network will mainly adjust weights on this feature
while ignore others
We do not want to prefer one feature over others just because they differ
solely measured units
For general feature vectors, to avoid such difficulty, the input patterns
should be shifted so that the average over the training set of each feature
is zero, and then be scaled to have the same variance as 1 in each feature
Input variables should be uncorrelated if possible

If inputs are uncorrelated then it is possible to solve for the value of one
weight without any concern for other weights
With correlated inputs, one must solve for multiple weights simultaneously,
which is a much harder problem
PCA can be used to remove linear correlations in inputs

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
38/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Vanishing and Exploding Gradients
Weight initialization
Training data Preparation & Data augmentation
Learning Rate Schedules

Normalizing input

For image data, as the three RGB channels have roughly the same
magnitude, there is generally no need to normalize their magnitude to
have unit variance
Two choices:

Subtracting the mean pixel

Subtracting the mean image

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
39/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Vanishing and Exploding Gradients
Weight initialization
Training data Preparation & Data augmentation
Learning Rate Schedules

Shuffling the training samples

Networks learn the fastest from the most unexpected sample
Shuffle the training set so that successive training examples never (rarely)
belong to the same class
Present input examples that produce a large error more frequently than
examples that produce a small error

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
40/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Vanishing and Exploding Gradients
Weight initialization
Training data Preparation & Data augmentation
Learning Rate Schedules

Learning rate schedules

In general, the learning rate of a training process would gradually become
smaller as the iteration number increases
A constant learning rate schedule is feasible but highly unlikely to be used
in practice
Time-based decay: decreases the learning rate with the following
equation

lr = lr× lr(0)

1 + decay ·#iterations

lr(0) is the initial learning rate and decay is a manually-set decaying rate
Step decay: A typical learning rate schedule (used in AlexNet, VGG, etc.)
is to drop the learning rate to the 1/10 of the previous value

lr = lr× 1/10 if mod (#iteration,#step) == 0

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
41/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Vanishing and Exploding Gradients
Weight initialization
Training data Preparation & Data augmentation
Learning Rate Schedules

Learning rate schedules

Exponential decay: Another common schedule is exponential decay (used
in GoogLeNet) with hyper-parameter k (e.g., k = 0.1)

lr = lr(0) · exp(−k ·#iteration)

Cosine annealing with warm restart: (1) the cosine function is used as
the learning rate annealing function; (2) after every several epochs, the
learning rate is restated to the initial learning rate

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
42/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Vanishing and Exploding Gradients
Weight initialization
Training data Preparation & Data augmentation
Learning Rate Schedules

Cosine annealing with warm restart

Learning rate schedule
lr(t) = lrimin +

1

2

(
lrimax − lrimin

)(
1 + cos

(
#iterations

Ti
π

))
[lrimin, lr

i
max] is the minimal and maximal learning rates of the ith run. The

learning rate restarts once Ti iterations are run
To start with an initially small period Ti and increase it by a factor of
Tmulti at every restart

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
43/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Vanishing and Exploding Gradients
Weight initialization
Training data Preparation & Data augmentation
Learning Rate Schedules

Learning Rate Warmup

For training certain network architectures (e.g., Transformer), a warmup
stage (learning rate gradually increases before decreasing) is found helpful
sometimes
Linear schedule with a warmup phase

Cosine schedule with a warmup phase

Cosine schedule with warmup and restart

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
44/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Vanishing and Exploding Gradients
Weight initialization
Training data Preparation & Data augmentation
Learning Rate Schedules

Adaptive learning rates v.s. manually designed schedules

Note that although we have introduced algorithms that can adaptively
update the learning rate, such as Adadelta, Adagrad, ADAM, engineers
and researchers still manually change the learning rates with the previous
mentioned learning-rate schedules

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
45/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Basics
Data parallelism and model parallelism

CPU

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
46/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Basics
Data parallelism and model parallelism

GPU

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
47/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Basics
Data parallelism and model parallelism

CPU vs GPU

CPU
Few, fast cores (1 - 16)
Good at sequential processing

GPU
Many, slower cores (thousands)
Originally for graphics
Good at parallel computation

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
48/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Basics
Data parallelism and model parallelism

NVIDIA vs AMD

NVIDIA is more commonly used in the research community
cuDNN drivers by NVIDIA is the basis for all deep learning libraries
You can implement your own layers using CUDA, the NVIDIA’s
programming language for parallel computing on GPU

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
49/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Basics
Data parallelism and model parallelism

CPU vs GPU

GPUs are really good at matrix multiplication

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
50/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Basics
Data parallelism and model parallelism

CPU vs GPU

GPUs are really good at convolution (cuDNN)

All comparisons are against a 12-core Intel E5-2679v2 CPU @ 2.4GHz running Caffe with Intel MKL 11.1.3.

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
51/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Basics
Data parallelism and model parallelism

GPU Training

Even with GPUs, training can be slow
ResNet-101: 1 week using 4 TITAN GPUs on ImageNet dataset

All comparisons are against a 12-core Intel E5-2679v2 CPU @ 2.4GHz running Caffe with Intel MKL 11.1.3.

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
52/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Basics
Data parallelism and model parallelism

Why need multi-GPU?

Further speed-up
The memory size of a single GPU is limited

GeForce GTX 670: 2GB
TITAN: 6GB
TITAN X: 12GB
Tesla K40: 12GB
Tesla K80: two K40
Tesla P100: 16 GB
Tesla V100: 16GB/32GB (USD $5,000)

Train bigger models
Data parallelism
Model parallelism

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
53/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Basics
Data parallelism and model parallelism

Cost of using multi-GPU

Synchronization
Communication overhead

Communication between GPUs in the same server
Communication between GPU servers

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
54/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Basics
Data parallelism and model parallelism

Data parallelism

The mini-batch is split across several GPUs. Each GPU is responsible
computing gradients with respect to all model parameters, but does so
using a subset of the samples in the mini-batch
The model (parameters) has a complete (same) copy in each GPU
The gradients computed from multiple GPUs are averaged to update
parameters in both GPUs

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
55/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Basics
Data parallelism and model parallelism

Drawbacks of data parallelism
Limitations

Require considerable communication between GPUs, since must
communicate both gradients and parameter values on every update
step
Each GPU must use a large number of samples to effectively utilize
the highly parallel device; thus, the mini-batch size effectively gets
multiplied by the number of GPUs

Synchronized batch normalization
Typical implementation of BatchNorm working on multiple devices
(GPUs) is fast (with no communication overhead), it inevitably
reduces the size of batch size, which potentially degenerates the
performance
This is not a significant issue in some standard vision tasks such as
ImageNet classification (as the batch size per device is usually large
enough to obtain good statistics)
However, it will hurt the performance in some tasks that the batch
size is usually very small (e.g., 1 per GPU)
Batch normalization across multiple GPUs is therefore needed. It
requires extra communication overhead but can stabilize the training
process Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
56/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Basics
Data parallelism and model parallelism

Model parallelism

Consist of splitting an individual network’s computation across multiple
GPUs
For instance, convolutional layer with N filters can be run on two GPUs,
each of which convolves its input with N/2 filters

The architecture is split into two columns which make easier to split
computation across the two GPUs

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
57/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Basics
Data parallelism and model parallelism

Model parallelism

A mini batch has the same copy in each GPU
GPUs have to be synchronized and communicate at every layer if
computing gradients in a GPU requires outputs of all the feature maps at
the lower layer

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
58/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Basics
Data parallelism and model parallelism

Model parallelism

Krizhevsky et al. customized the architecture of the network to better
leverage model parallelism: the architecture consists of two “columns”
each allocated on one GPU
Columns have cross connections only at one intermediate layer and at the
very top fully connected layers
While model parallelism is more difficult to implement, it has two potential
advantages relative to data parallelism

It may require less communication bandwidth when the cross connnections
involve small intermediate feature maps
It allows the instantiation of models that are too big for a single GPU’s
memory

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
59/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Basics
Data parallelism and model parallelism

Hybrid data and model parallelism

Data and model parallelism can be hybridized.

Examples of how model and data parallelism can be combined in order to make effective use of 4 GPUs

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
60/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Basics
Data parallelism and model parallelism

Hybrid data and model parallelism

Test error on ImageNet a function of time using different forms of parallelism. All experiments used the same
mini-batch size (256) and ran for 100 epochs (here showing only the first 10 for clarity of visualization) with the
same architecture and the same hyper-parameter setting as in Alex net. If plotted against number of weight
updates, all these curves would almost perfectly coincide.

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
61/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Basics
Data parallelism and model parallelism

Hybrid data and model parallelism

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
62/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Basics
Data parallelism and model parallelism

Distributed computation with CPU cores

Model parallelism: Only those nodes with edges that cross partition
boundaries will need to have their state transmitted between machines.
Even in cases where a node has multiple edges crossing a partition
boundary, its state is only sent to the machine on the other side of that
boundary once.
Within each partition, computation for individual nodes will the be
parallelized across all available CPU cores
It requires data synchronization and data transfer between machines
during both training and inference

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
63/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Basics
Data parallelism and model parallelism

Distributed computation with CPU cores

Models with local connectivity structures tend to be more amendable to
extensive distribution than fully-connected structures, given their lower
communication requirements
Models with a large number of parameters or high computational demands
typically benefit from access to more CPUs and memory, up to the point
where communication costs dominate
It means that the speedup cannot keep increasing with infinite number of
machines
The typical cause of less-than-ideal speedup is variance in processing times
across the different machines, leading to many machines waiting for the
single slowest machine to finish a given phase of computation

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
64/64

Gradient-based Optimization Basics
Optimization of training deep neural networks

Training Techniques
Multi-GPU Training

Basics
Data parallelism and model parallelism

Reading Materials

R. O. Duda, P. E. Hart, and D. G. Stork, “Pattern Classification,” Chapter 6, 2000.
Y. LeCun, L. Bottou, G. B. Orr, and K. Muller, “Efficient BackProp,” Technical Report,
1998.
Y. Bengio, I. J. GoodFellow and A. Courville, “Numerical Computation” in “Deep Learning”,
Book in preparation for MIT Press
Glorot, X. and Bengio, Y., “Understanding the difficulty of training deep feedforward neural
networks”, AISTATS 2010
K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification ”, ICCV 2015
I. Loshchilov and F. Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”,
ICLR 2017
D. P. Kingma, J. Ba, “Adam: A Method for Stochastic Optimization”, ICLR 2015
O. Yadan, K. Adams, Y. Taigman, and M. Ranzato, “Multi-GPU Training of ConvNets”,
arXiv:1312.583, 2014
J. Dean, G. S. Corrado, R. Monga, and K. Chen, “Large Scale Distributed Deep Networks,”
NIPS 2012

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

	Gradient-based Optimization Basics
	Optimization of training deep neural networks
	1st-order optimization methods
	2nd-order optimization methods

	Training Techniques
	Vanishing and Exploding Gradients
	Weight initialization
	Training data Preparation & Data augmentation
	Learning Rate Schedules

	Multi-GPU Training
	Basics
	Data parallelism and model parallelism

