
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
1/48

Computational graph of linear models
Fully-connected layers

Some other layer types

ELEG 5491: Introduction to Deep Learning
Neural Networks

Prof. LI Hongsheng

e-mail: hsli@ee.cuhk.edu.hk
Department of Electronic Engineering
The Chinese University of Hong Kong

Jan. 2022

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
2/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Outline

1 Computational graph of linear models

2 Fully-connected layers

3 Some other layer types

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
3/48

Computational graph of linear models
Fully-connected layers

Some other layer types

1 Computational graph of linear models

2 Fully-connected layers

3 Some other layer types

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
4/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Graphical representations of linear regression

Recall that linear regression and its cost function can be formulated as
y = w1x1 + w2x2 + · · ·wnxn + b

J(w1, · · · , wn, b) = ∥y − ŷ∥22
We here represent linear regression as a computational graph
Each input node represents one individual feature value x1, x2, · · · , xn of
one individual feature vector x = {x1, x2, · · · , xn}
A constant input node x0 = 1 is also utilized. Weights associated with
input nodes are denoted as w1, w2, · · · , wn and b

The ground-truth label is denoted as ŷ

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
5/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Graphical representations of logistic regression

Similarly, the logistic classification and its cost function are
σ(y) = σ(w1x1 + w2x2 + · · ·wnxn + b)

J(w1, · · · , wn, b) = −ŷ log σ(y)− (1− ŷ) log(1− σ(y))

We here represent linear regression as a computational graph
Each input node represents one individual feature value x1, x2, · · · , xn of
one individual sample x = {x1, x2, · · · , xn}
A constant input node x0 = 1 is also utilized. Weights associated with
input nodes are denoted as w1, w2, · · · , wn and b
The ground-truth label (either 0 or 1) is denoted as ŷ

J = −ŷ log σ(y)− (1− ŷ) log(1− σ(y))

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
6/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Graphical representations of C-class logistic regression

Similarly, the C-class logistic classification and its cost function are

y1 = w11x1 + w12x2 + · · ·w1nxn + b1

y2 = w21x1 + w22x2 + · · ·w2nxn + b2

· · ·
yC = wC1x1 + wC2x2 + · · ·wCnxn + bC

y1, y2, · · · , yC are then normalized by the following softmax function

pk =
exp(yk)∑C
i=1 exp(yi)

The loss functions are denoted as

J(W, b) = −
C∑

i=1

ŷi log pi

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
7/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Fully-connected layer in neural networks

The computational graph of multi-class (C-class) logistic classification
algorithm can be drawn as

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
8/48

Computational graph of linear models
Fully-connected layers

Some other layer types

1 Computational graph of linear models

2 Fully-connected layers

3 Some other layer types

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
9/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Fully-connected (linear) layer in neural networks

The linear calculation to calculate y1, y2, · · · , yC from x1, x2, · · · , xn are
named as fully-connected layer in neural networks
It is one of the basic structure blocks in neural networks

The linear computation between x and y can be denoted as a
matrix-vector multiplication y = Wx+ b, where W ∈ RC×n and b ∈ RC

are learnable parameters and x ∈ Rn is the feature vector of one sample

W =


w11 w12 · · · w1n

w21 w22 · · · w2n

· · ·
wC1 wC2 · · · wCn

 b =


b1
b2
...
bC

 x =


x1

x2

...
xn


Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
10/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Gradients of fully connected layer

The softmax or sigmoid functions are usually called the non-linearity (or
activation) function in neural networks
Recall that we have the following computational graph

Given the loss function w.r.t. W, b

J(W, b) = −
C∑

i=1

ŷi log pi

Our ultimate goal is to obtain ∂J
∂Wij

and ∂J
∂bi

to train the neural network
Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
11/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Computational graph

Computational graph is a graphical representation of a function
composition
Example

u = bc, v = a+ u, J = 3v

The derivatives can be calculated backward sequentially without redudant
computation

∂J

∂v
,

∂J

∂u
=

∂J

∂v

∂v

∂u
,

∂J

∂a
=

∂J

∂v

∂v

∂a
,

∂J

∂b
=

∂J

∂u

∂u

∂b
,

∂J

∂c
=

∂J

∂u

∂u

∂c

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
12/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Gradients of fully connected layer

Recall that the derivatives along computational graph can be calculated
sequentially
Eventually, we obtain

∂J

∂pi

∂J

∂yi

∂J

∂Wij

∂J

∂bi

We therefore can calculate the following gradients sequentially and use
chain rule to obtain the above gradients

∂J

∂pi

∂pi
∂yi

∂yi
∂Wij

∂yi
∂bi

Gradients of cross-entropy loss layer

∂J

∂pi
=

{
− 1

pi
ŷi = 1

0 ŷi = 0

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
13/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Gradients of softmax layer

We are interested in calculating the gradients

∂pi
∂yj

=
∂ eyi∑C

k=1
eyk

∂yj

We will be using quotient rule of derivatives. For f(x) = g(x)
h(x)

,

f ′(x) =
g′(x)h(x)− h′(x)g(x)

[h(x)]2

where in our case, we have

g = eyi , h =

C∑
k=1

eyk

If i = j, g′ = ∂eyi

∂yi
= eyi , h′ =

∂
∑C

k=1 eyk

∂yi
= eyj

If i ̸= j, g′ = ∂eyi

∂yj
= 0, h′ =

∂
∑C

k=1 eyk

∂yi
= eyj

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
14/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Gradients of softmax layer

If i = j

∂pi

∂yj
=

∂ eyi∑C
k=1

eyk

∂yj
=

eyi
∑C

k=1 e
yk − eyj eyi(∑C

k=1 e
yk

)2

=
eyi

(∑C
k=1 e

yk − eyj
)

(∑C
k=1 e

yk

)2

=
eyj∑C

k=1 e
yk

×

(∑C
k=1 e

yk − eyj
)

∑C
k=1 e

yk

= pi (1− pj)

If i ̸= j

∂pi

∂yj
=

∂ eyi∑C
k=1

eyk

∂yj
=

0− eyj eyi(∑C
k=1 e

yk

)2

=
−eyj∑C
k=1 e

yk
×

eyi∑C
k=1 e

yk

= −pj · pi

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
15/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Gradients of softmax layer

Therefore, the gradients of the softmax layer can be defined as

∂pi
∂yj

=

{
pi (1− pj) if i = j
−pj · pi if i ̸= j

Combining gradients of the two layers, cross-entropy layer and softmax
layer, the gradient of J w.r.t. yi can be calculated as ∂J

∂yj
= ∂J

∂pi

∂pi
∂yj

for
ŷi = 1

If i = j and ŷi = 1,
∂J

∂yj
= −(1− pi),

If i ̸= j and ŷi = 1,
∂J

∂yj
= pj

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
16/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Gradients of fully-connected layer

Recall that a fully-connected layer is calculated as
y = Wx+ b

y1 = w11x1 + w12x2 + · · ·w1nxn + b1

y2 = w21x1 + w22x2 + · · ·w2nxn + b2

· · ·
yC = wC1x1 + wC2x2 + · · ·wCnxn + bC

Gradients w.r.t. wij and bi can be calculated as
∂yi
∂wij

= xj
∂yi
∂bi

= 1

Multiplying the gradients from the above layer according to chain rule of
derivatives results in

∂J

∂wij
=

∂J

∂yi

∂yi
∂wij

=
∂J

∂yi
xj

∂J

∂bi
=

∂J

∂yi

∂yi
∂bi

=
∂J

∂yi
In matrix and vector format, we have

∂J

∂W
=

∂J

∂y
xT (outer product of the two vectors), ∂J

∂b
=

∂J

∂y

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
17/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Gradients of the fully-connected layer

We can further calculate gradients of fully-connected layers w.r.t. inputs
x1, x2, · · · , xn

Gradients of the fully-connected layer can be calculated as

∂yi
∂xj

= wij

Gradients of J w.r.t. xi therefore can be calculated as

∂J

∂xj
=

C∑
i=1

∂J

∂yi

∂yi
∂xj

=

C∑
i=1

∂J

∂yi
wij

Converting this into a vector format, we have

∂J

∂x
= WT ∂J

∂y

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
18/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Forward computation and back-propagation

Each layer’s calculation can be categorized into forward and backward
calculation
Forward computation: for calculating classification probabilities from
bottom layer to top layers sequentially
Backward computation (back-propagation): for calculating gradients for
parameter update from top layer to bottom layers sequentially

Figure: In each training iteration, (1) forward computation from bottom to top
and then (2) back-propagation from top to bottom.

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
19/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Gradients of a mini-batch of samples

Recall that we mentioned that for large-scale data, the neural networks are
generally trained with Stochastic Gradient Descent
Stochastic Gradient Descent calculates derivatives J w.r.t. W, b using a
mini-batch of training samples {x(1), x(2), · · · , x(N)}

· · · · · ·
The gradients for updating parameters will be calculated as the average of
the gradients of the mini-batch with batch size N ,

J =
1

N

N∑
i=1

(
J(1) + J(2) + · · ·+ J(N)

)
∂J

∂W
=

1

N

N∑
i=1

∂J (i)

∂W

∂J

∂b
=

1

N

N∑
i=1

∂J (i)

∂b

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
20/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Summary of fully-connected, softmax, and cross-entropy loss layers

Fully-connected layer
Input: x = [x1, x2, · · · , xn], output: y = [y1, y2, · · · , yC]
Learnable parameters: W and b
Forward input: x, foward output: y = Wx+ b

Backward input: ∂J

∂y

Backward output: ∂J

∂x
= WT ∂J

∂y
, ∂J

∂W
=

∂J

∂y
xT , ∂J

∂b
=

∂J

∂y

Cross-entropy loss layer
Input: p = [p1, p2, · · · , pC], ŷ = [ŷ1, ŷ2, · · · , ŷC], output J
Learnable parameters: None

Forward input: p, ŷ, foward output: −
C∑

i=1

ŷi log pi

Backward output: ∂J

∂pi
=

−
1

pi
ŷi = 1

0 ŷi = 0

A neural network can be considered as a structure consisting of the basic
layers

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
21/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Summary of fully-connected, softmax, and cross-entropy loss layers

Softmax layer
Input: y = [y1, y2, · · · , yC], output: p = [p1, p2, · · · , pC]
Learnable parameters: None
Foward input: y, forward output: pi =

exp(yi)∑C
j=1 exp(yj)

Backward input:
[

∂J
∂p1

, ∂J
∂p2

, . . . , ∂J
∂pC

]
, Backward output:

∂J

∂yi
=

∂J

∂pi
pi(1− pi)−

∑
j ̸=i

∂J

∂pj
pjpi

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
22/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Multi-Layer Perceptron

A neural network generally consists of multiple stacked fully-connected
(linear) stacked together, where each layer has their independent
parameters to learn (in general cases)
We generally do not draw non-linearity function layers between and after
fully-connected layers and do not draw x0, y

1
0 , y

2
0 , y

3
0 , · · ·

However, the multiple fully connected layer has to be separated by
non-linearity layers (e.g., softmax or sigmoid layers). Otherwise, multiple
stacked fully-connected layer is equivalent to ONE fully-connected layer

y2 = W 2(W 1x+ b1) + b2 =
[
W 2W 1]x+

[
W 2b1 + b2

]

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
23/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Multi-layer Perceptron

Generally, a single linear layer with non-linearity function (e.g., logistic
classification) does not have enough capacity to model the underlying
function
Neural networks with > 2 fully-connected layers can approximate any
highly non-linear function
A 3-layer Multi-Layer Perceptron (MLP) can be illustrated below

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
24/48

Computational graph of linear models
Fully-connected layers

Some other layer types

The MNIST dataset

The MNIST dataset is a large database of handwritten digits that is
commonly used for evaluating different machine learning algorithms
It contains 60,000 training images and 10,000 testing images
Each image is of size 32× 32

To use MLP to classify the digits, the 32× 32 images can be vectorized
into 32× 32 = 1024 feature vectors as inputs

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
25/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Deeply learned feature representations

Recall that in the begin of the course, we claimed that deep neural
networks are “learning” features instead of using manually designed
features
The last fully-connected layer with the non-linearity function layer can be
considered as a linear classifier
All the previous neural layers can be considered as a series of
transformations that gradually transform the input features into linearly
separable features
The low-level features captures more general information of samples of all
classes
The high-level features are closer to the final task

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
26/48

Computational graph of linear models
Fully-connected layers

Some other layer types

The learned weights

The learned weights of each low-level neuron capture certain general
patterns of all samples

(Duda et al. Pattern Classification 2000)

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
27/48

Computational graph of linear models
Fully-connected layers

Some other layer types

1 Computational graph of linear models

2 Fully-connected layers

3 Some other layer types

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
28/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Non-linearity layers

Sigmoid (function) layer
Unlike softmax function, the sigmoid function only takes one value as input
and output one value each time
Input: z = [z1, z2, · · · , zN], forward output: yi = σ(zi) =

1
1+e−zi

for
i = 1, 2, . . . , N
Backward input: ∂J

∂yi
for i = 1, 2, · · · , N , backward output:

∂J

∂y
=

∂J

∂yi
· σ(zi)(1− σ(zi)) for i = 1, 2, . . . , N

Use scenarios:
Back in 1990s-2000s, it was one of the most popular non-linearity function
between fully connected layers
Can be used as the last layer of binary classification
Can be used to gate the information flow through another neuron

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
29/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Non-linearity layers

Tanh (hyperbolic tangent function) layer
Sigmoid function maps [−∞,∞] to [0, 1], hyperbolic tangent function maps
[−∞,∞] to [−1, 1]
Forward input: z = [z1, z2, . . . , zN], forward output y = [y1, y2, . . . , yN]:

y = gtanh(z) =
ez − e−z

ez + e−z

Backward input: ∂J
∂yi

for i = 1, 2, · · · , N , backward output:

∂J

∂zi
=

∂J

∂yi
· (1− tanh2(z))

for i = 1, 2, . . . , N
It is now much less frequently used compared with sigmoid function

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
30/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Non-linearity layers

ReLU (Rectified Linear Unit) layer
One of the most frequently used non-linear function since 2012, because of
its fast convergence rate
Forward input: x = [x1, x2, . . . , xn]; forward output y = [y1, y2, . . . , yN]:

yi = max(0, xi) for i = 1, 2, · · · , n

Backward input: ∂J

∂yi
for i = 1, 2, . . . , N ; backward output:

∂J

∂xi
=

{
∂J
∂yi

if xi > 0

0 otherwise

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
31/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Non-linearity layers

Leaky ReLU (Rectified Linear Unit) layer
Leaky ReLU is an improved version of the ReLU layer. It solves the problem
of ReLU of having no gradients when the input is less than 0
Forward input: x = [x1, x2, · · · , xn]; forward output:

yi =

{
αxi if xi < 0

xi if xi ≥ 0
for i = 1, 2, · · · , n

where α is a constant

Backward input: ∂J

∂yi
for i = 1, 2, · · · , n; backward output:

∂J

∂xi
=

{
α ∂J

∂yi
if xi < 0

∂J
∂yi

if xi ≥ 0

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
32/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Non-linearity layers

PReLU layer
PReLU takes one step further by making the coefficient of leakage α to be
learned during network training
Forward input: x = [x1, x2, · · · , xn]; forward output:

yi =

{
αxi if xi < 0

xi if xi ≥ 0
for i = 1, 2, . . . , n

where α is a learnable constant

Backward input: ∂J

∂yi
for i = 1, 2, . . . , n; backward output:

∂J

∂xi
=

{
α ∂J

∂yi
if xi < 0

∂J
∂yi

if xi ≥ 0

Parameter gradients:

∂J

∂α
=

n∑
i=1

1(xi < 0)xi ·
∂J

∂yi

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
33/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Loss layers

Mean Squared Error (MSE)/L2 loss layer
Generally used for regression problem
Forward inputs: z(1), z(2), · · · , z(N) and ground-truth ẑ(1), ẑ(2), · · · , ẑ(N),
forward output:

J =
1

2N

N∑
i=1

(
z(i) − ẑ(i)

)2

Backward output:
∂J

∂z(i)
=

1

N

(
z(i) − ẑ(i)

)
L1 loss layer

Also commonly used for regression problem, especially when there are many
outliers
Forward inputs: z(1), z(2), · · · , z(N) and ground-truth ẑ(1), ẑ(2), · · · , ẑ(N),
forward output:

J =
1

N

N∑
i=1

∣∣∣z(i) − ẑ(i)
∣∣∣

Backward output:

∂J

∂z(i)
=


−

1

N
ẑ(i) if z(i) − ẑ(i) ≥ 0

1

N
ẑ(i) if z(i) − ẑ(i) < 0

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
34/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Why do we need “deep” neural networks

Theoretically, a three-layer neural network can approximate any non-linear
function. Logistic regression/classification can all be considered as a
“shallow” three-layer neural network
Then, why do we need “deep” neural networks?
If the desired function is very complex, with three-layer neural networks, it
might require an exponentially increasing number of neurons in the hidden
layers to well approximate the function
However, with many layers, a small number of neurons in each layer would
be enough to approximate the desired function

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
35/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Branching and concatenation

A group of neurons can be connected by two different fully-connected
layers (branches)

Two feature vectors (branches) can also concatenate to generate a longer
feature vector

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
36/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Addition of two groups of neurons

The two vectors of neurons can be added to obtain a group of neurons

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
37/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Batch Normalization (BN) Layer

Each dimension of the input feature vectors should be normalized by
subtracting the mean over the entire training set and then optionally
divided by the standard deviation over the entire training set

Recall that in mini-batch gradient descent, we train neural networks with
mini-batches of samples and each mini-batch might have different feature
distributions (named covariance shift) because of the small mini-batch size

To handle different feature distributions in each iteration, the neural
networks need to jointly handle feature distribution variations and correctly
classify the training samples, which prevent the network from focusing on
only learning for classification

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
38/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Batch Normalization (BN) Layer (cont’d)

The BN layer normalizes each input feature vector of a mini-batch
Forward input: feature vector x ∈ Rn in a mini-batch B

µ̂B ←
1

|B|
∑
x∈B

x and σ̂2
B ←

1

|B|
∑
x∈B

(x− µB)
2 + ϵ

BN(x) = γ ⊙ x− µ̂B

σ̂B + ϵ
+ β (“⊙”: element-wise multiplication)

To address the fact that in some cases the activations may actually need
to differ from standardized data, BN also introduces learnable scaling
coefficients γ ∈ Rn and offset β ∈ Rn

We add a small constant ϵ > 0 to the variance estimate to ensure never
dividing by zero
Training:

In practice, instead of estimating mean and standard deviation of each
mini-batch, we keep a running estimate of the batch feature mean and
standard deviation

x̂(t+1) = (1− momentum)× x̂(t) + momentum × x̂

x̂ is the estimation of the new mini-batch. A common choice of momentum
is 0.1

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
39/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Batch Normalization (BN) Layer (cont’d)

Testing:
There are three choices of mean and standard deviation during testing
(1) Calculate the mean and standard deviation from the current batch
(2) Use the running estimate of mean and standard deviation during training
(3) Calculate the mean and standard deviation from the entire training set
or a relative large sub-set of the training set layer by layer

Advantages of using BN layers
Network trains faster: Each training iteration will actually be slower
because of the extra calculations. However, it should converge much more
quickly, so training should be faster overall
Allows higher learning rates: Gradient descent usually requires small
learning rates for the network to converge. And as networks get deeper,
their gradients get smaller during back propagation so they require even
more iterations. Using batch normalization allows us to use much higher
learning rates, which further increases the speed at which networks train
Makes weights easier to initialize: Batch normalization seems to allow us
to be much less careful about choosing our initial starting weights
Makes more activation functions viable: For instance, Sigmoids lose their
gradient pretty quickly when used in neural networks

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
40/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Dropout layer

Deep neural networks can have many large model capacity because of their
deep structures
They are likely to overfit on small-scale dataset
Some neurons easily become “inactive” during training, because a small
number of other neurons can perform well on the training set
To mitigate the problem, the dropout layer randomly sets proportion of
p ∈ [0, 1] neurons to zero and force the following the layer to use the
remaining neuron responses for completing the prediction task
General guideline: use after fully-connected layers but not the topmost
fully-connected layer

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
41/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Dropout layer

Training:
Forward input: dropout ratio p, input feature vector z = [z1, z2, · · · , zn],
forward output: randomly set proportion p of feature values in
[z1, z2, · · · , zn] to zero to obtain y

Backward input: ∂J
∂y

, backward output:

∂J

∂zi
=

{
∂J
∂zi

if zi is not dropped out in forward computation
0 if zi is dropped out in forward computation

Testing/Inference:
Forward input: dropout ratio p, input feature vector z = [z1, z2, · · · , zn];
forward output: [pz1, pz2, · · · , pzn]

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
42/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Dropout layer

In general, when using dropout layers, training errors (losses) will
INCREASE
For small-scale datasets, dropout layers are effective and decrease testing
errors
However, since the dropout layer is designed to prevent overtiffting, it
shows LESS to NONE effectiveness on large-scale datasets

Figure: Test error on MINIST datasets for different architectures with and without
dropout. The networks have 2 to 4 hidden layers each with 1024 to 2048 units.

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
43/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Modern MLPs

A modern MLP can consist of several fully-connected layers, each of which
is followed by a BN layer and then a PReLU or Leaky ReLU non-linearity
layer
Each dimension of the input feature dimension should be normalized by
first subtracting the mean and then dividing by the standard deviation
An MLP can have multiple losses either all at the topmost layer or at
different layers

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
44/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Modern MLPs (cont’d)

A modern MLP can consist of several fully-connected layers, each of which
is followed by BN layer and then PReLU or Leaky ReLU non-linearity layer
Each dimension of the input feature dimension should be normalized by
first subtracting the mean and then dividing by the standard deviation
An MLP can have multiple losses either all at the topmost layer or at
different layers

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
45/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Autoencoder for unsupervised learning

Autoencoder can be considered as an unsupervised learning method,
whose goal is to learn a neural network that is able to encode input
high-dimensional feature vectors into low-dimensional feature vectors
It consists of an encoder and a decoder, which both consists of a series of
stacked fully-connected layers

Encoder: gradually decreases the number of neurons in each layer
Decoder: gradually increases the number of neurons in each layer
In most network structure designs, the encoder and decoder have the same
number of layers and mirrored number of neurons

Let x(1), x(2), · · · , x(N) denote the input feature vectors and
x̃(1), x̃(2), · · · , x̃(N) denote the output feature vectors. The reconstruction
loss function of autoencoder is

J =
1

2N

N∑
i=1

∥x(i) − x̃(i)∥22

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
46/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Autoencoder

Illustration of the Autoencoder in Hinton’s (Science 2006) paper

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
47/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Autoencoder

A comparison between PCA (a classifical unsupervised learning method)
and autoencoder on learning two-dimensional codes for MINIST digits

Figure: Left: 2-D codes generated by PCA. Right: 2-D codes generated by
autoencoder.

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
48/48

Computational graph of linear models
Fully-connected layers

Some other layer types

Denoising Autoencoder

There is also variants of autoencoder. One famous one is denoising
autoencoder
It randomly sets zeros to either inputs or to intermediate feature values to
zero and require the autoencoder to reconstruct the clean version of the
inputs

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning

	Computational graph of linear models
	Fully-connected layers
	Some other layer types

