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Generative Models

There are different categories of generative neural models
Generative Adversarial Networks (GAN) were mostly famous before, which
is now replaced by diffusion models
Diffusion models define a Markov chain of diffusion steps to slowly add
random noise to data and then learn to reverse the diffusion process to
construct desired data samples from the noise

Figure: Overview of different types of generative models.
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Diffusion model is the state-of-the-art generative model

Figure: Generated images by Midjourney v4.
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Forward Diffusion Process (adding noise)

Given a data point sampled from a real data distribution x0 ∼ q(x) define
a forward diffusion process in which we add small amount of Gaussian
noise to the sample in T steps, producing a sequence of noisy samples
x1, . . . ,xT

The step sizes are controlled by a variance schedule {βt ∈ (0, 1)}Tt=1

q (xt|xt−1) = N
(
xt;
√

1− βtxt−1, βtI
)
, q (x1:T |x0) =

T∏
t=1

q (xt|xt−1)

The data sample x0 gradually loses its distinguishable features as the step
t becomes larger

Eventually when T →∞,xT is equivalent to an isotropic Gaussian
distribution.

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning



5/25

Forward Diffusion Process

We can sample xt at any arbitrary time step t in a closec form using
reparameterization trick

Let αt = 1− βt and ᾱt =
∏t
i=1 αi:

xt =
√
αtxt−1 +

√
1− αtεt−1; εt−1, εt−2, · · · ∼ N (0, I)

=
√
αtαt−1xt−2 +

√
1− αtαt−1ε̄t−2; εt−2 merges two Gaussians (∗)

= · · ·
=
√
ᾱtx0 +

√
1− ᾱtε

q (xt|x0) = N
(
xt;
√
ᾱtx0, (1− ᾱt) I

)
We also have x0 =

1√
ᾱt

(
xt −

√
1− ᾱtεt

)
(*) When merging two Gaussians N

(
0, σ2

1I
)

and N
(
0, σ2

2I
)
, the new

distribution is N
(
0,
(
σ2

1 + σ2
2

)
I
)
. Here the merged standard deviation is√

(1− αt) + αt (1− αt−1) =
√

1− αtαt−1

Usually, a larger update step is used, when the sample gets noiser,
β1 < β2 < · · · < βT and therefore ᾱ1 > · · · > ᾱT
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Reverse diffusion process (removing noise)

If we can reverse the above process and sample from q (xt−1|xt), we can
recreate the true sample from a Gaussian noise input, xT ∼ N (0, I)

Note that if βt is small enough, q (xt−1|xt) will also be Gaussian

Unfortunately, we cannot easily estimate q (xt−1|xt)
We therefore need to learn a model pθ to approximate these conditional
probabilities in order to run the reverse diffusion process

pθ (x0:T ) = p (xT )
T∏
t=1

pθ (xt−1|xt)

pθ (xt−1|xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t))
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Reverse diffusion process

the reverse conditional probability is tractable when conditioned on x0:

q (xt−1|xt,x0) = N
(
xt−1; µ̃ (xt,x0), β̃tI

)
Using Bayes’ rule:

q (xt−1|xt,x0) = q (xt|xt−1,x0)
q (xt−1|x0)

q (xt|x0)

∝ exp

(
−1

2

(
(xt −

√
αtxt−1)2

βt
+

(xt−1 −
√
ᾱt−1x0)2

1− ᾱt−1
−
(
xt −

√
ᾱtx0

)2
1− ᾱt

))

= exp

(
−1

2

(
x2
t − 2

√
αtxtxt−1 + αtx

2
t−1

βt
+

x2
t−1 − 2

√
ᾱt−1x0xt−1 + ᾱt−1x

2
0

1− ᾱt−1
−
(
xt −

√
ᾱtx0

)2
1− ᾱt

))

= exp

(
−1

2

((
αt
βt

+
1

1− ᾱt−1

)
x2
t−1 −

(
2
√
αt

βt
xt +

2
√
ᾱt−1

1− ᾱt−1
x0

)
xt−1 + C (xt,x0)

))

where C (xt,x0) is some function not involving xt−1 and details are omitted
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Reverse diffusion process

Following the standard Gaussian density function, the mean and variance
can be parameterized as follows (αt = 1− βt and ᾱt =

∏T
i=1 αi)

β̃t = 1/

(
αt
βt

+
1

1− ᾱt−1

)
= 1/

(
αt − ᾱt + βt
βt (1− ᾱt−1)

)
=

1− ᾱt−1

1− ᾱt
· βt

µ̃t (xt,x0) =

(√
αt

βt
xt +

√
ᾱt−1

1− ᾱt−1
x0

)
/

(
αt
βt

+
1

1− ᾱt−1

)
=

(√
αt

βt
xt +

√
ᾱt−1

1− ᾱt−1
x0

)
1− ᾱt−1

1− ᾱt
· βt

=

√
αt (1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x0

We can represent x0 = 1√
ᾱt

(
xt −

√
1− ᾱtεt

)
and plug it into the above

equation and obtain

µ̃t =

√
αt (1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
1√
ᾱt

(
xt −

√
1− ᾱtεt

)
=

1√
αt

(
xt −

1− αt√
1− ᾱt

εt

)
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Reverse diffusion process

Recall the VAE lower bound is modeled as

−LVAE = log pθ(x)−DKL (qφ(z|x)‖pθ(z|x)) ≤ log pθ(x)

The setup is very similar to VAE and thus we can use the variational lower
bound to optimize the negative log-likelihood

− log pθ (x0) ≤ − log pθ (x0) +DKL (q (x1:T |x0) ||pθ (x1:T |x0))

= − log pθ (x0) + Ex1:T∼q(x1:T |x0)

[
log

q (x1:T |x0)

pθ (x0:T ) /pθ (x0)

]
= − log pθ (x0) + Eq

[
log

q (x1:T |x0)

pθ (x0:T )
+ log pθ (x0)

]
= Eq

[
log

q (x1:T |x0)

pθ (x0:T )

]
LVLB = Eq(x0:T )

[
log

q (x1:T |x0)

pθ (x0:T )

]
≥ −Eq(x0) log pθ (x0)

The objective can be further rewritten to be a combination of several
KL-divergence and entropy terms
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Reverse diffusion process

LVLB = Eq(x0:T )

[
log

q (x1:T |x0)

pθ (x0:T )

]
= Eq

[
log

∏T
t=1 q (xt|xt−1)

pθ (xT )
∏T
t=1 pθ (xt−1|xt)

]

= Eq

[
− log pθ (xT ) +

T∑
t=1

log
q (xt|xt−1)

pθ (xt−1|xt)

]

= Eq

[
− log pθ (xT ) +

T∑
t=2

log
q (xt|xt−1)

pθ (xt−1|xt)
+ log

q (x1|x0)

pθ (x0|x1)

]

= Eq

[
− log pθ (xT ) +

T∑
t=2

log

(
q (xt−1|xt,x0)

pθ (xt−1|xt)
· q (xt|x0)

q (xt−1|x0)

)
+ log

q (x1|x0)

pθ (x0|x1)

]

= Eq

[
− log pθ (xT ) +

T∑
t=2

log
q (xt−1|xt,x0)

pθ (xt−1|xt)
+

T∑
t=2

log
q (xt|x0)

q (xt−1|x0)
+ log

q (x1|x0)

pθ (x0|x1)

]

= Eq

[
− log pθ (xT ) +

T∑
t=2

log
q (xt−1|xt,x0)

pθ (xt−1|xt)
+ log

q (xT |x0)

q (x1|x0)
+ log

q (x1|x0)

pθ (x0|x1)

]

= Eq

[
log

q (xT |x0)

pθ (xT )
+

T∑
t=2

log
q (xt−1|xt,x0)

pθ (xt−1|xt)
− log pθ (x0|x1)

]

= Eq[DKL (q (xT |x0) ‖pθ (xT ))︸ ︷︷ ︸
LT

+
T∑
t=2

DKL (q (xt−1|xt,x0) ‖pθ (xt−1|xt))︸ ︷︷ ︸
Lt−1

− log pθ (x0|x1)︸ ︷︷ ︸
L0

]
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Reverse diffusion process

We can label each component in the variational lower bound loss
separately

LVLB = LT + LT−1 + · · ·+ L0

where LT = DKL (q (xT |x0) ‖pθ (xT ))

Lt = DKL (q (xt|xt+1,x0) ‖pθ (xt|xt+1)) for 1 ≤ t ≤ T − 1

L0 = − log pθ (x0|x1)

Every KL term in LVLB (except for L0) compares two Gaussian
distributions and therefore they can be computed in closed form (as shown
in the chapter of VAE)

LT is constant and be ignored during training because q has no learnable
parameters

xT is a Gaussian noise. Ho et al. 2020 models L0 using a separate
discrete decoder derived from N (x0;µθ (x1, 1) ,Σθ (x1, 1))
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Parameterization of Lt for Training Loss

Recall that we need to learn a neural network to approximate the
conditioned probability distributions in the reverse diffusion process,
pθ (xt−1|xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t))

We train µθ to predict µ̃t =
1√
αt

(
xt −

1− αt√
1− ᾱt

εt

)
Because xt is available as input at training time, we can reparameterize
the Gaussian noise term instead to make it predict εt from the input xt at
time step t:

µθ (xt, t) =
1√
αt

(
xt −

1− αt√
1− ᾱt

εθ (xt, t)

)
Thus xt−1 = N

(
xt−1; 1√

αt

(
xt − 1−αt√

1−ᾱt
εθ (xt, t)

)
,Σθ (xt, t)

)
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Parameterization of Lt for Training Loss

The loss term Lt is parameterized to minimize the difference from µ̃:

Lt = Ex0,ε

[
1

2 ‖Σθ (xt, t)‖22
‖µ̃t (xt,x0)− µθ (xt, t)‖2

]

= Ex0,ε

[
1

2 ‖Σθ‖22

∥∥∥∥ 1√
αt

(
xt −

1− αt√
1− ᾱt

εt

)
− 1√

αt

(
xt −

1− αt√
1− ᾱt

εθ (xt, t)

)∥∥∥∥2
]

= Ex0,ε

[
(1− αt)2

2αt (1− ᾱt) ‖Σθ‖22
‖εt − εθ (xt, t)‖2

]

= Ex0,ε

[
(1− αt)2

2αt (1− ᾱt) ‖Σθ‖22

∥∥εt − εθ
(√
ᾱtx0 +

√
1− ᾱtεt, t

)∥∥2

]
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Parameterization of Lt for Training Loss

Simplification: Ho et al. (2020) found that training the diffusion model
works better with a simplified objective that ignores the weighting term

Lsimple
t = Et∼[1,T ],x0,εt

[
‖εt − εθ (xt, t)‖2

]
= Et∼[1,T ],x0,εt

[∥∥εt − εθ
(√
ᾱtx0 +

√
1− ᾱtεt, t

)∥∥2
]

The final simplified objective is

Lsimple = Lsimple
t + C

C is a constant not depending on θ

Figure: The training and sampling algorithms in DDPM (Ho et al. 2020).
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Parameterization of βt

The forward variances are set to be a sequence of linearly increasing
constants in Ho et al. (2020), from from β1 = 10−4 to βT = 0.02, which
are small compared with normalized pixel values in [−1, 1]
Diffusion models in their experiments showed high-quality samples but still
could not achieve competitive model log-likelihood as other generative
models
Nichol & Dhariwal (2021) proposed several improvement techniques to
improve diffusion models. One of the improvements is to use a
cosine-based variance schedule:

βt = clip

(
1− ᾱt

ᾱt−1
, 0.999

)
ᾱt =

f(t)

f(0)
where f(t) = cos

(
t/T + s

1 + s
· π

2

)2

Figure: Comparison of linear and cosine-based scheduling of β t during training.
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Latent diffusion model

Latent diffusion model (LDM; Rombach & Blattmann, et al. 2022) runs
the diffusion process in the latent space instead of pixel space, making
training cost lower and inference speed faster

Most bits of an image contribute to perceptual details and the semantic
and conceptual composition still remains after aggressive compression

LDM loosely decomposes the perceptual compression and semantic
compression with generative modeling learning by first trimming off
pixel-level redundancy with autoencoder and then manipulate/generate
semantic concepts with diffusion process on learned latent
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Latent diffusion model

The perceptual compression process relies on an autoencoder model
An encoder E compress the input image x ∈ RH×W×3 to a smaller 2D
latent vector z = E(x) ∈ Rh×w×c, where the downsampling rate
f = H/h = W/w = 2m,m ∈ N
The downsampling rate f = H/h = W/w = 2m,m ∈ N. Then an decoder
D reconstructs the images from the latent vector, x̃ = D(z)
Two types of regularization in autoencoder training are used to avoid
arbitrarily high-variance in the latent spaces

KL-reg: A small KL penalty towards a standard normal distribution over the
learned latent, similar to VAE.

VQ-reg uses a vector quantization layer within the decoder, like VQVAE but
the quantization layer is absorbed by the decoder
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Latent diffusion model

The diffusion and denoising processes happen on the latent vector z
The denoising model is a time-conditioned U-Net, augmented with the
cross-attention to handle flexible conditioning information(e.g. class
labels, semantic maps, blurred variants of an image).)
Each type of condition is paired with a domain-specific encoder τθ to
project the conditioning input y to an intermediate representation that can
be mapped into cross-attention component, τθ(y) ∈ RM×dτ :

Attention(Q,K,V) = softmax

(
QK>√

d

)
·V

where Q = W
(i)
Q · ϕi (zi) ,K = W

(i)
K · τθ(y),V = W

(i)
V · τθ(y)

and W
(i)
Q ∈ Rd×d

i
ε ,W

(i)
K ,W

(i)
V ∈ Rd×dτ , ϕi (zi) ∈ RN×d

i
ε , τθ(y) ∈ RM×dτ
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Stable Diffusion

Stable Diffusion is a latent text-to-image diffusion model

It is trained on 512× 512 images from a subset of the LAION-5B database

The model uses a frozen CLIP ViT-L/14 text encoder to condition the
model on text prompts

It uses a 860M UNet and 123M text encoder, is relatively lightweight, and
can run on a GPU with at least 10GB memory

Figure: Results of Stable Diffusion model.
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LoRA: Low-Rank Adaptation

LoRA was originally introduced for fine-tuning large-language models,
which are too expensive to be fine-tuned (e.g., GPT-3 has billions of
parameters)

LoRA proposes to freeze pre-trained model weights and inject trainable
layers (rank-decomposition matrices) in each transformer block

LoRA can be applied to the cross-attention layers that relate the image
generation with text prompts
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LoRA: Low-Rank Adaptation

Additive sub-networks are added to each of the feedfoward layer

During finetuning, residual features are predicted by the new sub-networks
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LoRA: Low-Rank Adaptation

Additive sub-networks are added to each of the feedfoward layer

During finetuning, residual features are predicted by the new sub-networks
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LoRA: Low-Rank Adaptation

After finetuing, the FFN weights W are updated as

W = W + α∆W = W + αBA, rank r � min (dFFW , dmodel )

α ∈ [0, 1] is a hyper-parameter
The Stable Diffusion with LoRA finetuing allows finetuning with just a few
new training images
Trained weights are much, much smaller. Because the original model is
frozen and we inject new layers to be trained, we can save the weights for
the new layers as a single file that weighs in at 3 MB in size. This is
about one thousand times smaller than the original size of the UNet model
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Quick Summary

Pros: Tractable models can be analytically evaluated and cheaply fit data,
but they cannot easily describe the structure in rich datasets

Flexible models can fit arbitrary structures in data, but evaluating,
training, or sampling from these models is usually expensive

Diffusion models are both analytically tractable and flexible

Cons: Diffusion models rely on a long Markov chain of diffusion steps to
generate samples, so it can be quite expensive in terms of time and
compute
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