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Problems with fully connected networks

Convolutional Neural Network

@ There are data of grid-like structures, for instance,
o 1D grid: sequential data

o 2D grid: natural images
e 3D grid: video, 3D image volumes

@ Problem of fully-connected neural networks on handling such image data
o The number of input values are generally quite large
o The number of weights grows substantially as the size of the input images
o Pixels in distance are less correlated

Example: 1000x1000 image

\ 1M hidden units
.

- 10*12 parametersll!

Ranzato CVPR'13
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Problems with fully connected networks

A locally connected neural networks

@ Sparse connectivity: a hidden unit is only connected to a local patch
(weights connected to the patch are called filter or kernel)

o It is inspired by biological systems, where a cell is sensitive to a small

sub-region of the input space, called a receptive field. Many cells are tiled
to cover the entire visual field

Example: 1000x1000 image
1M hidden units
Filter size: 10x10
100M parameters

Ranzato CVPR’13
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Problems with fully connected networks

Locally connected neural networks

@ The learned filter can be considered as a spatially local pattern to capture
local information

@ A hidden neuron (unit) at a higher layer has a larger receptive field in the
input

@ Stacking many such layers leads to “filters” (not anymore linear) which
become increasingly “global”, independent of different locations
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Problems with fully connected networks

Shared weights at different spatial locations

@ In addition to local connectivity, we here also require the weights to be
shared at all spatial locations

@ Hidden nodes at different locations share the same weights. It greatly
reduces the number of parameters to learn
@ Such a property is called translation invariance: captures statistics in local
patches and they are independent of locations
o For example, similar image edges may appear at different locations

layer m

layer m-1

Weights with the same color have
identicalvalues
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Convolution in Convolutional Neural Networks

2D convolution in CNN

@ Given an input feature map (or image) of spatial size P x Q, the
convolution with a single-channel 3 x 3 kernel operates as follows

0|12
2|12|0
0|1]2
Kernel e

@ 2D convolution in 2D Convolutonal Neural Networks (CNN) with
single-channel input 2 € R*? and single-channel kernel W € R**?, can

be formulated as
ls/2] [t/2]

y(i,7) = Z Z w(u,v) - z(i+u,j+v)+b

u=—|s/2] v=—[t/2]
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Convolution in Convolutional Neural Networks

2D convolution in CNN

@ Given an input feature map (or image) = € RPXQ | the parameters to be
learned during training is the kernel W and the bias parameter b

@ The kernel size s and t are generally chosen as the odd numbers

@ Note that in conventional signal processing theory, the above operation is
called “correlation” instead of “convolution”

@ The results of convolution in CNNs are called “feature maps”

o Without extra procedures, the resulting feature maps would be smaller
than the input feature maps

(e D]>)) (=)o)
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Convolution in Convolutional Neural Networks

Padding

o The input feature map = € RF*? can be padded with zeros on four sides
to ensure the output feature map has the same spatial size P x Q)

@ The padding sizes on the four sides are usually chosen as |s/2] and |t/2]

The padding size for 3 X 3 kernels are 1 for the four sides

=)
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Convolution in Convolutional Neural Networks

Stride

@ The idea of the stride is to skip some of the slide locations of the kernel

@ A stride of 1 means to pick slides a pixel apart, so basically every single
slide, acting as a standard convolution

@ A stride of 2 means picking slides 2 pixels apart, skipping every other slide
in the process, downsizing by roughly a factor of 2, a stride of 3 means
skipping every 2 slides, downsizing roughly by factor 3, and so on.

A stride 2 convolution

STE
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Convolution in Convolutional Neural Networks

Dilation

@ Image understanding tasks generally requires to use image contextual
information at each spatial location

@ A k X k kernel can cover image patches of size k x k , what if we want to
use the same number of parameters to cover larger image regions

@ Dilated convolution with coefficient [. Each pair of neighboring kernel

weights are [ pixels away
Dilated convolution (I = 2)

=)
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Convolution in Convolutional Neural Networks

Deconvolution (transposed convolution)

@ The above operations maintain or decrease spatial sizes of the input
feature maps

@ In some scenarios, one would like to increase the spatial size of feature
maps

@ Deconvolution (some researchers argue that it should be named as
transposed convolution) is one common option to do so

@ Another even simpler operation but sometimes more effective operation is
bilinear interpolation

1 X 1 padding, stride 2, transposed 1 X 2 padding, stride 2, transposed (odd)

(=)o)

ELEG5491: Introduction to Deep Learning




Convolution in Convolutional Neural Networks

The multi-channel version

@ The above equation handles input feature maps (images) with only 1
channel

@ However, there exist images of multiple channels. For instance, the
colorful images consist of R, G, B channels

o To handle an input feature map z € RFX@XC | the filter should be
extended to w € RF*#*C

It can be viewed as a collection of 2D kernels




Convolution in Convolutional Neural Networks

The multi-channel version

@ Each of the kernels of the filter “slides” over their respective input
channels, producing a processed version of each channel

afll =8 =M

B @

@ Each of the per-channel processed versions are then summed together to
form one output channel

g g =

\#//
=

@ The bias gets added to the output channel so far to produce the final

output channel
0o
\?j
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Convolution in Convolutional Neural Networks

The multi-channel version

o Therefore, given a multi-channel feature map = € REX@XC 35 input, each
filter w € R*¥*XC generates one single-channel feature map

@ For the same input feature map, there can be multiple filters operating on
the input and each of them generates one channel of feature map

@ The feature map can be concatenated along the channel dimension to
generate a multi-channel

o D filters lead to an D-dimensional output feature map y € RF*@xP

output feature map output feature maps

Input feature maps

Input feature maps

Ranzato CVPR’13
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Convolution in Convolutional Neural Networks

The multi-channel version

@ Here is another illustration from CS231n course of Stanford

Input Volume (+pad 1) (7x7x3) Filter W0 (3x3x3) Filter W1 (3x3x3)  Output Volume (3x3x2)
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Convolution in Convolutional Neural Networks

Grouped convolution

The input feature maps can be divided into multiple groups along the
channel dimension

@ Convolution filters are applied to only one of the groups

The different feature groups generally have different convolution filters

The below example shows that a grouped convolution with input feature
dimension ¢y, output feature dimension c2, and 2 feature groups

c filter x c?/g
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Convolution in Convolutional Neural Networks

Depthwise convolution followed pointwise convolution

o If we separate a c-channel feature map into ¢ groups, i.e., each channel as
a separate group, grouped convolution on such separate single-channel
feature maps are named depthwise convolution

@ Depthwise convolution (e.g., 3 x 3, 5 x 5, etc.) is lightweight compared to
ordinary convolution. But the resulting output feature maps do not have
contain any cross-channel information, which is unfavourable for various
learning problems

@ Depthwise convolution is therefore generally followed by a 1 x 1
convolution (also named as pointwise convolution) to achieve
cross-channel information fusion and control the output channel number

Depthwise Convolution

Pointwise Convolution
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Convolution in Convolutional Neural Networks

Convolution in 2D CNNs

RPXQXC’

o If the input feature map x has the shape in and output feature

map y has the shape RF*@*Cout

o If we would like to use a filter of spatial size is k x k, the filter should have
Cout kernels of RFXFXCin

o Combining all operations, if the input feature map is of size L;, = [P, Q],
the output feature map size is

L, +2 x padding — dilation x (kernel size — 1) —1
Lout = . +1
stride

o Extension from fully-connected neural networks to Convolutional Neural
Networks (CNN)

<7, . #\ A 1o
500 > @ am
) . Iput layer width

input layer
hidden layer 1  hidden layer 2

X
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Convolution in Convolutional Neural Networks

Forward and backward computation of convolution

@ We illustrate how to calculate the gradients of with simple 1D convolution
e Forward input: = = [x1,22, - ,x7]; forward output: y = [y1,ys, -, y7]
@ Forward computation (we use w(i) and w; interchangeably):

1

yi:Zwk-xi+k+b & y=w=xxz+b (sometimes just y = w xx)

k=—1
o Backward input: gj fori=1,3,...,7; backward output:
1 1 1
0J ~ 8J dy; 0J Oyin 0J Oyir aJ
0w z]: dy; Ov; kgl Oyirr Omi kgl Oyt Ozi glwfkay”k
g—i = rotigoo (w)*gj (‘+' represents convolution), aa—u{k = Z %(z) -z (i+-k)

Arrows of the same color denote the same convolution weights

Yo ¥ Y3 Ya Y5 Yo YT

I’O

Ty Ty T3 Ty Ty Te Ty
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Convolution in Convolutional Neural Networks

Backward computation of convolution

@ Backward computation of learnable parameters w and b

0] =0 Oy <=0
wr Zay, dwi Ly TE

Z oJ ayz Z

@ The calculation can be generalized to 2D convolution

o Forward input: z € REXQ parameters w € R5*t; forward output:
y=w*xz+ b ("* denotes convolution)

o Backward input: g‘] € RPXQ; backward output:
o7 rot (w) * o7
o R o7
oz 180 ay

) =Y S i) atiug o) —ZZ*@ i)
g
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Convolution in Convolutional Neural Networks

Receptive field of Convolution Neural Network

@ A convolutional neural network can be stacked for multiple times

@ Max pooling and strided convolution are constantly used to quickly
decrease spatial dimension of feature maps

@ The receptive field of a feature can be briefly defined as the region in the
input image pixel space that the feature is calculated from

_—

Two consecutive convolution with kernel size k = 3 X 3, padding size p = 1 X 1, stride s = 2 X 2. (Right)
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Convolution in Convolutional Neural Networks

Receptive field of Convolution Neural Network

o To calculate the receptive field at each layer, we define the following
notation
o 7in: the current receptive field
e j (jump): the distance between two adjacent features

o k, p, s: kernel size, padding size, and stride size

Jout = Jin X S
Tout = Tin + (k - 1) X jin
@ For the very first input to a network, we always have 1o =1 and jo =1

@ Given the previous example, we have

1"1ZTo-‘r(k—l)><j0=1+(3—1)><1:3, J1=JoxX2=2
7‘2:1"1+(l€71)><]'1:3+2><2:7, j2:j1><2:4

@ One should ensure that the receptive field is large enough for each features
for different tasks

Prof. LI Hongsheng ELEG5491: Introduction to Deep Learning



Other layer types for CNN and CNN architectures

Non-linearity function, 2D dropout and 2D Batch Normalization layers

@ Previously introduced non-linearity function layers can all be adopted,
including sigmoid function, softmax function (along chosen dimension),
RelLU layer, PReLU layer

@ 2D Dropout layer: Randomly zeros out entire some channels of every
instances. Each channel will be zeroed out independently on every forward
call with probability p using samples from a Bernoulli distribution

o 2D Batch Normalization: feature vectors of length C' at each pixel location
of the 2D feature map P x @ x C is treated as a sample to calculate the
sample mean and sample standard deviation for normalization

Instance Norm
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Other layer types for CNN and CNN architectures

CNN with max pooling layers

@ Convolution operation alone with padding will result in the feature maps
of the same spatial sizes

@ However, for image classification, we would like to summarize the input
image into a 1D feature vector and then use a final linear classifier to
classify it into pre-defined classes

@ We need max pooling layers to gradually decrease the spatial size of the
feature maps and eventually encode input image into 1D feature vectors

— cAR
— TRUCK
— VAN

O O-seve

FULLY
INPUT CONVOLUTION + RELU  POOLING CONVOLUTION + RELU  POOLING. FLATIEN RMY o SOFTMAX
FEATURE LEARNING CLASSIFICATION
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Other layer types for CNN and CNN architectures

Pooling layers

o A 2 x 2 max pooling with stride 2 is the mostly common choice to

decrease spatial sizes

@ Each channel of the input feature map is max pooled independently
@ Input feature map size: P x @ x C; output feature map size:

P/2xQ/2xC
Forward computation
12 120 (30| O
8 [12] 2 | 0| 2x2Max-Pool |20 |30
34|70 | 37| 4 112 | 37
1121100 | 25 | 12
Backward computation
aJ | aJ
O ayll 3:‘/]2 0
o|lofofo % ;"MJ
11 12
2 C:I o7 | o7
0| o0 B 0
B‘] 2 6y21 0.‘/22
a:‘/Zl 0 O 0
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Other layer types for CNN and CNN architectures

Global average pooling layer

@ Global average pooling is commonly utilized as the last layer to convert 2D
feature maps to 1D feature vectors
@ Feature map of each channel is independently averaged to obtain a 1D

feature vector

Forward computation

o0
o0
2$8838° 2
¢ ® 0
B > o
"O% OO " @ v
) o v
00 B
XC) Y

w=6

Backward computation

1o
© @ |36 9y
o0 .
%o o o
o
a;
%o < 0
A
s ° el /Y
o woi OF
2 ay:

g
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Other layer types for CNN and CNN architectures

LeNet-5 for hand written digit recognition

Instead of vectorizing (flattening) the input digit images, LeNet-5 propose
to use CNN for recognizing hand written digits

@ It consits of 3 convolutional layers (C1, C3 and C5), 2 sub-sampling
(pooling) layers (S2 and S4), and 1 fully connected layer (F6), that are
followed by the output layer

o Convolutional layers use 5 x 5 convolutions with stride 1

Sub-sampling layers are 2 x 2 average pooling layers with stride 2

Tanh functions are utilized as non-linearity functions

1 feats ©3:1. maps 16@10x10
: feature maps ot 16055
INF‘JL;T Saaus. P I $4:1. maps 16@! xc5 .

6@14x14. I r r 50" glaw C‘JBJTPUT

Full connection Gaussian connections
c c i Full connection
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Advanced Convolution Layers

Deformable Convolution [Dai et al. ICCV'17]

@ The above mentioned regular convolution operates on the input 2D
feature maps of grid structure with a static kernel

@ We reformulate the regular convolution as

y(po) = Y w(pn)-x(po+pa)
PnER

@ po = (z0,y0) € R? the coordinates of the pixel of interest

@ R denotes the local neighborhood defined by a kernel, e.g., 3 x 3 and
5 % 5 local grid centered at each input pixel

@ pp = (Tn,Yn) € R? is local coordinates of kernel weights, e.g.,
(-1,1),(-1,0),(-1,1),...,(1,-1),(1,0),(1,1) for 3 x 3 kernels

-
i i I
1 3
Standard Convolution Deformable Convolution
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Advanced Convolution Layers

Deformable Convolution [Dai et al.]

@ The deformable convolution is operated first on the regular grid with
shared kernel weights, but each of which shifted by a learnable offset
Apn = (A, Ay,) € R?

@ The first convolution outputs a feature map of dimension 2N if
information from NN spatial locations needs to be aggregated for each pixel

@ The predicted shift Ap,, is added to the coordinates of the retrieved
features po + pr. Bilinear sampling will be used if the shifted coordinates
po + pn + Apy, are not integers

y(po) = D w(pn) -« (po+pn+ Aps)

P Pn€ER
/
g -
conv y offsets 2
/ offset field ]
NV . . . o, .
8O0
g . Coae RO T ieieel PR
. .
oo
P . » . Ld . .
input feature map output feature map .
lllustration of deformable convolution Examples of p, € R and pn + Apn,
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Advanced Convolution Layers

Examples of Deformable Convolution

@ Deformable convolution used in object detection. Each image triplet shows
the sampling locations (9 x 3 = 729 red points in each image) in three
levels of 3 x 3 deformable filters for 3 points of interest (green)
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Advanced Convolution Layers

Examples of Deformable Convolution

@ Deformable convolution used in object detection. Each image triplet shows
the sampling locations (9 x 3 = 729 red points in each image) in three
levels of 3 x 3 deformable filters for 3 points of interest (green)
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Advanced Convolution Layers

Deformable Convolution v2 [Zhu et al.]

@ Deformable convolution v1 only shifts kernel weight locations but didn't
change the kernel weights for each pixel of interest po

@ Deformable convolution v2 moves one step further and modulate each
kernel weight w(py) with a coefficient Amy,

y(po) = Y w(pn) -z (po+pn + Apn) - Amy,
pPn€R
@ Amy, € [0, 1] modulation scalar for the n-th location

@ Both Ap, and Amy, are obtained via a convolution layer outputting
feature maps of 3N channels

@ The first 2N channels records the predicted offsets Apy. The remaining N
channels are fed to a sigmoid layer to obtain modulation scalars Amy,

@ In general, slightly more computation than deformable convolution vl but
also slightly higher performance
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Advanced Convolution Layers

Partial Convolution (sparse convolution)

@ For the task of image inpainting, it aims to fill up the contents in the holes
of an input image. However, there exist invalid pixels that hinder the
regular convolution

e Partial convolution is formulated as

sum( Zmlwzxz +b, if sum(m) >0

T = sum(m all i

0, otherwise

@ z and m denote feature (or pixel) values for the current convolution
window and the corresponding binary mask, respectively. 1 has the same
shape as m but with all one's. 2’ is the output feature value

@ The scaling factor sum(1)/sum(m) applies appropriate scaling to adjust
the varying amount of valid (unmasked) inputs
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Advanced Convolution Layers

Partial Convolution (sparse convolution)

@ After each partial convolution, we update the binary mask as well
m =1L if sum(M) >0
“ 1 0, otherwise
@ If the convolution was able to condition its output on at least one valid
input value, then we mark that location to be valid
@ The sparse convolution can be stacked for multiple layers as regular

convolution does

ELEG5491: Introduction to Deep Learning
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Advanced Convolution Layers

Submanifold Sparse Convolution

@ The regular convolution and above mentioned sparse convolution gradually
increase the number of valid pixels (features)

o With regular 3 x 3 convolutions, the set of valid (green, active, non-zero,
etc.) sites grows rapidly

EEY

o With submanifold sparse convolution, the set of valid (green, active,
non-zero, etc.) is unchanged. Non-valid sites (red) have no computational
overhead

EEY
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Advanced Convolution Layers

Submanifold Sparse Convolution

@ The submanifold sparse convolution has exactly the same formula as
partial convolution

@ The only difference is that submanifold convolution is only performed at
active sites

EE
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