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Outline

1 Introduction to machine learning

2 Introduction to deep learning

3 Review of Linear Regression

4 Review of Logistic Classification
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The objective of machine learning

Learn a mapping function from training data

• Example of classification

• Example of regression
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Machine learning aims at learning a function

Given an input value or vector, a function assigns it with a value or vector
“One-to-many” mapping is not a function. “Many-to-one” mapping is a
function.

Not a function A function

Note that a function can have a vector output or matrix output. For
instance, the following formula is still a function[

y1
y2

]
= f

([
x1

x2

])
=

[
x1 + x2

x1x2

]
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Function estimation

We are interested in predicting y from input x and assume there exists a
function that describes the relationship between y and x, e.g., y = f(x)

If the function f ’s parametric form is fixed, prediction function f can be
parametrized by a parameter vector θ
Estimating f̂ from a training set D = {(xtrain

1 , y1), (x
train
2 , y2), · · · ,

(xtrain
n , yn)}

With a better design of the parametric form of the function, the learner
could achieve better performance
This design process typical involves domain knowledge
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Example of machine learning

Face recognition in smart surveillance for crossing at a red light in China
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Example of machine learning

Object detection for autonomous driving
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Example of machine learning

Action recognition

Sample video frames from UCF-101 dataset
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Example of machine learning

Email spam classification
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Example of machine learning

Speech recognition
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Example of machine learning

Computer-aided medical diagnosis
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Example of machine learning

Function of gene sequence classification
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Example of machine learning

Financial time series prediction
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Machine learning is a sub-field of artificial intelligence

Artificial intelligence: general reasoning
Machine learning: learn to obtain a function with expected outputs
Deep learning: machine learning with deep neural networks

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction to machine learning
Introduction to deep learning
Review of Linear Regression

Review of Logistic Classification

Machine learning systems

Classification of types of fishes
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Classification model

Each sample is represented by a d-dimensional feature vector.
The goal of classification is to establish decision boundaries in the feature
space to separate samples belonging to difference classes patterns
belonging to difference classes
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Feature matters

Properly choose features for different classification/regression problems is
one of the key problems in machine learning applications
Computer vision applications

Histogram of Oriented Gradients (HOG) features
Scale-invariant Feature Transform (SIFT) features
Oriented FAST and rotated BRIEF (ORB) features

Speech recognition
Linear Predictive Codes (LPC) features
Perceptual Linear Prediction (PLP) features
Mel Frequency Cepstral Coefficients (MFCC) features

If discriminative (good) enough features exist, even a very simple linear
classifier can perform well
Back in 1970s to early 2010s, features are mostly manually designed by
humans according to experience
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Multi-dimensional feature vectors

Jointly use two features (lightness and width)
Each sample can be considered as a 2-dimensional point in the feature
space
The classification error on the training data becomes lower than using only
one feature
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Linearly separable features

What makes good features: linearly separable features
A linear classifier (decision boundary) that correctly classifies all training
samples

However, such a property cannot be met for most scenarios
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Training set and testing set

The data with annotations should be separated into training set, validation
set (optional), and testing set
Reaching 100% accuracy on the training set cannot guarantee good
performance to general unseen samples
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Training set and testing set

The data with annotations should be separated into training set, validation
set (optional), and testing set
Reaching 100% accuracy on the training set cannot guarantee good
performance to general unseen samples
The model must have the capability of generalize to unseen (test) samples
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Model (learner) capacity

Capacity. The ability of the learner (or called model) to discover a
function taken from a family of functions. Examples:

Linear predictor

y = wx+ b

Quadratic predictor

y = w2x
2 + w1x+ b

Degree-10 polynomial predictor

y = b+
10∑
i=1

wix
i

The latter family is richer, allowing to capture more complex functions
Capacity can be measured by the number of training examples {x(i), y(i)}
that the learner could always fit, no matter how to change the values of
x(i) and y(i)
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Underfitting

The learner cannot find a solution that fits training examples well
For example, use linear regression to fit training examples {x(i), y(i)} where
y(i) is an quadratic function of x(i)

Underfitting means that the learner cannot capture some important
aspects of the data
Reasons for underfitting happens

Model is not rich enough
Difficult to find the global optimum of the objective function on the training
set or easy to get stuck at local minimum
Limitation on the computation resources (not enough training iterations of
an iterative optimization procedure)

Underfitting commonly happens in non-deep learning approaches with
large scale training data and could be even a more serious problem than
overfitting in some cases
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Overfitting

The learner fits the training data well, but loses the ability to generalize
well, i.e. it has small training error but larger generalization error
A learner with large capacity tends to overfit

The family of functions is too large (compared with the size of the training
data) and it contains many functions which all fit the training data well.
Without sufficient data, the learner cannot distinguish which one is most
appropriate and would make an arbitrary choice among these apparently
good solutions
A separate validation set helps to choose a more appropriate one
In most cases, data is contaminated by noise. The learner with large
capacity tends to describe random errors or noise instead of the underlying
models of data (classes)
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Model complexity (capacity)

The goal is to classify novel examples not seen yet, but not the training
examples!
Generalization. The ability to correctly classify new examples that differ
from those used for training

Overly complex models lead to complicated de-
cision boundaries. It leads to perfect classifica-
tion on the training examples, but would lead
to poor performance on new patterns.

The decision boundary might represent the
optimal tradeoff between performance on the
training set and simplicity of classifier, there-
fore giving highest accuracy on new patterns.
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Optimal capacity

Typical relationship between capacity and both training and generalization (or
test) error. As capacity increases, training error can be reduced, but the
optimism (difference between training and generalization error) increases. At
some point, the increase in optimism is larger than the decrease in training
error (typically when the training error is low and cannot go much lower), and
we enter the overfitting regime, where capacity is too large, above the optimal
capacity. Before reaching optimal capacity, we are in the underfitting regime.

(Bengio et al. Deep Learning 2014)
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Machine learning systems

Feature extraction
Discriminative features
Invariant features with respect to certain transformation
A small number of features

Classifier/regressor
Tradeoff of classification errors on the training set and the model complexity
Decide the form of the classifier
Tune of the parameters of the classifiers by training

Post-processing
Risk: the cost of mis-classifying sea bass is different than that of
mis-classifying salmon
Prior: it is more likely for a fish to be the same class as its previous one
Integrating multiple classifiers: classifiers are based on different sets of
features
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Training cycle
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Data collection

Collect both training data, validation data, and test data
Label the ground truth annotations
Is the training set large enough?
Is the training set representative enough?

Are the training data and the testing data collected under the same
condition?

Initial examination of the data to get a feel of data structure
Summary of statistics
Producing plots

The analysis of the evaluation results may require further data collection
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Problem setup for supervised learning

Given pairs of inputs and outputs, learn a function to map inputs to
outputs

Function inputs: features x(i) (x(i) ∈ Rd for general problems)
Function outputs: target outputs y(i) ∈ R
One training sample: (x(i), y(i))

Training set of m samples: {(x(1), y(1)), (x(2), y(2)), · · · , (x(m), y(m))}
Hypothesis h : Rd → R: the function to be learned to map a general input x
to expected output y
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Training and testing

The parametric form of h is fixed
Training: find the optimal parameters θ of function h based on the
training set {(x(1), y(1)), (x(2), y(2)), · · · , (x(m), y(m))}, usually by
minimizing some cost function
Testing: fix the found optimal parameters θ, given the input features of
one unseen example x, predict the output value y

Learning 

algorithm  

Training set 

h 

Training inputs Training outputs 

h 

Testing input Testing output 

Training Stage Testing Stage

If target variables y are continuous, the learning is a regression problem
If target variables y can only take a small number of discrete values
(classes), it is a classification problem
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Evaluation

Apply the trained classifier to an independent validation set of labeled
samples
It is important to both measure the performance of the system and to
identify the need for improvements in its system and to identify the need
for improvements in its components
Compare the error rates on the training set and the validation set to
decide if it is overfitting or underfitting

High error rates on both the training set and the validation set: underfitting
Low error rate on the training set and high error rate on the validation set:
overfitting
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Design cycle
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Learning schemes

Supervised learning
An “expert” provides a category label for each pattern in the training set
It may be cheap to collect patterns but expensive to obtain the labels

Unsupervised learning
The system automatically learns feature transformation from the training
samples without any annotation to best represent them

Weakly supervised learning
The supervisions are not exact or rough
Example: learning image segmentation by providing image-level annotations

Semi-supervised learning
Some samples have labels, while some do not
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1 Introduction to machine learning

2 Introduction to deep learning

3 Review of Linear Regression

4 Review of Logistic Classification
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Deep learning

Deep learning aims at learning better feature representations
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Neural networks

Deep learning is based on neural networks

Neural networks originates back to 1970s-1980s
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Neural networks

A network of interconnecting artificial neurons
It simulates some properties of biological neural networks: learning
generalization adaptivity fault networks: learning, generalization, adaptivity,
fault tolerance, distribution computation
Low dependence on domain-specific knowledge
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What makes the difference?

Deep learning becomes popular again in 2010s
Large-scale training data
Super parallel computing power (e.g. GPU and TPU)
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Deep learning in neural networks

Become hot since 2006
Hinton et al., “A Fast Learning Algorithm for Deep Belief Nets,” Neural
Computation, 2006

Other famous researchers in deep learning
Yann LeCun (NYU), Yoshua Bengio (U of Montreal)

MIT Technology Review lists deep learning as MIT Technology Review
lists deep learning as one of the top-10 breakthrough technologies in 2013
Neural networks with more hidden layers
Many existing statistical models can be approximated as neural networks
with one or two hidden layers
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Success of deep learning in 2011

Speech recognition breakthrough in 2011
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Success of deep learning

Object classification over 1 million images of 1000 classes
ImageNet Challenge 2012
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Success of deep learning

ImageNet Challenge 2013
All teams used deep learning
MSRA, IBM, Adobe, NEC, Clarifai, Berkley, U. Tokyo, UCLA, UIUC,
Toronto, etc.
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Success of deep learning

Google’s neural machine translation system in 2016
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Success of Go playing in 2016

DeepMind’s AlphaGo beat Go master Lee Sedol in 2016
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Success of deep learning in 2020

DeepMind’s AlphaFold beats humans in protein folding estimation
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Success of text-based image generation in 2022

OpenAI’s DALL-E2

An astronaut riding a horse in a photo realistic style
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Success of text-based image generation in 2022

Google’s Imagen
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Different types of deep learning

Back in 2006, the name “deep learning” proposed by G. Hinton mostly
describe deep neural networks trained in the unsupervised learning setting

Restricted Boltzmann Machine
Deep Belief Network
Auto-encoder

In the past a few years, deep learning research is dominated by supervised
learning approaches

Multi-layer perceptron (MLP)
Convolutional Neural Network (CNN)
Recurrent Neural Network (RNN)

Since the recent two years, unsupervised deep learning and semi-supervised
learning have re-gained much attention from the research community
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Overview of supervised learning

Supervised learning aims to learn a function that maps input feature
vectors to expected output values

A Learned 

Function h 
Input 

(Feature Vector) 

Expected Output 

(Continous/Discrete) 

Process map for supervised learning

Define the 

problem 

Define Inputs 

& Outputs 

Choose a 

function 

parametric form 

• Choose function 

parametric form 

• Linear Regr. 

• Logistic Regr. 

Choose a 

cost function 

• MSE cost 

• Cross-entropy 

cost 

Optimize the 

cost function 

w.r.t. params. 

• Learn the params. 

by optimizing cost 

function 

Fix params. 

Test unseen 

samples 

• Apply the learned 

function in actual 

scenarios 

Training set with 

paired inputs & 

outputs 

Unseen 

samples’ 

feature vectors 
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The blood fact content example
We enrich the example

Weight (kilograms) Age (years) Blood fat content
84 46 354
73 20 190
65 52 405
...

...
...

70 30 263
Input features of each sample would be x(i) = [x

(i)
1 , x

(i)
2 ]T ∈ R2,

two-dimensional vectors
x
(i)
1 is the weight of the ith person in the training set

x
(i)
2 is the age of the ith person

Linear regression
Approximate y as a linear function of feature vectors x = [x1, x2]T ∈ R2

y = h(x) = θ0 + θ1x1 + θ2x2

For more general n-dimensional feature vectors x ∈ Rn+1, where we assume
x0 = 1 is a constant

y = h(x) = θ0 + θ1x1 + · · · θnxn =
n∑

i=0

θixi = θT x
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Linear regression

θ = [θ0, · · · , θn]T ∈ Rn+1 are the parameters (or weights) for learning
Given a training set, how do we pick, or learn, the parameters θ?
Given the training set, make h(x) = θTx close to y in the training set as
much as possible
How to measure the closeness of h(x)’s prediction?
Use cost function or (lost function or just simply loss). Note that here
we don’t normalize w.r.t. the number of samples m for simplicity. The
actual loss generally conducts normalization

J(θ) =
1

2

m∑
i=1

(h(x(i))− y(i))2

This function is called Mean Squared Error (MSE) / L2 cost function
Our goal would be to learn θ to minimize the cost function

min
θ

J(θ) =
1

2

m∑
i=1

(h(x(i))− y(i))2

This specific minimization problem (when m > n) with MSE cost function
is called ordinary least squares problem
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Gradient descent for optimization

Use a search algorithm that starts with some “initial guess” for θ and that
iteratively changes θ to make J(θ) smaller
To recover local minimum, we could utilize the gradient descent algorithm
with initial parameter θ(0)

Gradient descent algorithm
For iteration k = 1, 2, 3, · · ·

For parameter θj , where j = 1, 2, · · · , n
θj := θj − α

∂

∂θj
J(θ),

Terminate if k is large enough or ∥∇θJ(θ)∥ is small enough

α is called the learning rate (or step size), −∇J(θi) is the negative
gradient direction.
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Matrix calculus

Suppose that f : Rm×n → R is a function that takes as input a matrix
A ∈ Rm×n and returns a scalar real value
The gradient of f with respect to A ∈ Rm×n is the matrix of partial
derivatives,

∇Af(A) ∈ Rm×n =



∂f(A)

∂A11

∂f(A)

∂A12

· · ·
∂f(A)

∂A1n
∂f(A)

∂A21

∂f(A)

∂A22

· · ·
∂f(A)

∂A2n

...
...

. . .
...

∂f(A)

∂Am1

∂f(A)

∂Am2

· · ·
∂f(A)

∂Amn


where (∇Af(A))ij =

∂f(A)

∂Aij
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Matrix calculus

The gradient of f with respect to x ∈ Rn is the vector of partial
derivatives,

∇xf(x) ∈ Rn =



∂f(x)

∂x1
∂f(x)

∂x2

...
∂f(x)

∂xn


Properties

∇x(f(x) + g(x)) = ∇xf(x) +∇xg(x)

For t ∈ R, ∇x(tf(x)) = t∇xf(x)
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Gradient descent for linear regression

When we only have one training sample (x(i), y(i)),

For a single training sample (x(i), y(i)), we have
θj := θj + α(y(i) − h(x(i))x

(i)
j

For the whole training set, we have the following batch gradient descent
algorithm
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Gradient descent for linear regression

One key disadvantage remains, at each parameter update iteration, we
need to sum over all training samples

This could be very time-consuming, when the number of samples is very
large (for example, m > 1 million)
Stochastic gradient descent: at each parameter update iteration, sample
only 1 training sample to accelerate the parameter updating

Stochastic gradient descent for linear regression
For iteration k = 1, 2, 3, · · ·

Randomly (or sequentially) sample one training sample from the training set
(x(i), y(i))

θj := θj + α(y(i) − h(x(i)))x
(i)
j (for every j)

Terminate if k is large enough or ∥∇θJ(θ)∥ is small enough
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Stochastic gradient descent for linear regression

Often, stochastic gradient descent gets θ “close” to the minimum much
faster than batch gradient descent
However that it may never “converge” to the minimum, and the
parameters θ will keep oscillating around the minimum of J(θ)
In practice most of the values near the minimum will be reasonably good
approximations to the true minimum

Balance between gradient descent and stochastic gradient descent?
Mini-batch gradient descent!

Mini-batch stochastic gradient descent for linear regression
For iteration k = 1, 2, 3, · · ·

Randomly (or sequentially) sample a mini-batch of training samples P from
the training set (x(i), y(i))

θj := θj +
∑

for i in P

α(y(i) − h(x(i)))x
(i)
j (for every j)

Terminate if k is large enough or ∥∇θJ(θ)∥ is small enough
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Mini-batch stochastic gradient descent

Mini-batch stochastic gradient descent is between gradient descent and
stochastic gradient descent
Much faster than gradient descent
More stable than stochastic gradient descent

NOTE: those gradient descent algorithms are also utilized to optimize
other machine learning models (e.g., deep neural networks)
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Linear regression for 1D features

Solving for our blood fat content prediction problem with only one input
feature “age” yields θ0 = 102.5751 and θ1 = 5.32

20 25 30 35 40 45 50 55 60
150

200

250

300

350

400

450

500
Blood fat content prediction

Age
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Binary classification

We first look at the binary classification problem with linear model
Outputs y of the learned function h:

0 – negative class
1 – positive class

Naturally, the possible range of values that h could output must be {0, 1}
We could first relax the discrete constraints of the outputs to be in the
continuous range [0, 1]

We choose the following form for hypothesis h

h(x) = g(θTx) =
1

1 + e−θT x

where
g(z) =

1

1 + e−z
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Logistic regression

θTx is a linear function. Its range of possible values is in [−∞,∞]

g(z) is called logistic function or sigmoid function
g(z) maps [−∞,∞] → [0, 1]

g(z) → 1 when z → ∞, and g(z) → 0 when z → −∞
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Derivative of the sigmoid function

Derivative of the sigmoid function g(z) is easy to compute

NOTE: We could view the continuous value h(θTx) as confidence (or
probability) that x belongs to the positive class

Given a series of training samples (x(1), 0), (x(2), 1), · · · , (x(m), 0), how
can we fit the parameters θ for the linear model θTx?
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Probabilistic modeling of binary classification

Based on our probabilistic view on the continuous value h(θTx), we
assume that

P (y = 1|x; θ) = h(x) = g(θTx)

P (y = 0|x; θ) = 1− h(x) = 1− g(θTx)

Given the input features x, it has the probability P (y = 1|x; θ) that x
belongs to positive class; it has the probability P (y = 0|x; θ) that x
belongs to negative class

Since y = 0 or y = 1, we could write the formula for a single training
sample in a compact way

p(y|x; θ) = (h(x))y(1− h(x))1−y
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Probabilistic modeling of binary classification

We are interested in maximize the joint probability (likelihood) over the
entire training set X = {x(1), · · · , x(m)} and →

y = {y(1), · · · , y(m)}

max
θ

L(θ) = p(
→
y |X; θ)

=
m∏
i=1

p(y(i)|x(i); θ)

=
m∏
i=1

(h(x(i)))y
(i)

(1− h(x(i)))1−y(i)

Convert the production to summation by taking log function over the
likelihood L to obtain log likelihood ℓ

ℓ(θ) = logL(θ)

=
m∑
i=1

y(i) log h(x(i)) + (1− y(i)) log(1− h(x(i)))

NOTE: log is a monotonically increasing function. θ and logL(θ) would
all reach their maximum values at the same parameters θ
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Gradient ascent for maximizing log likelihood

Similar to our optimization scheme for linear regression, we could use
gradient ascent to maximize the log likelihood ℓ

θ := θ + α∇θℓ(θ)

Consider only one training sample (x, y)

∂

∂θj
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y
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θTx

))
− (1− y)g

(
θTx

))
xj

= (y − hθ(x))xj

Using the fact that g′(z) = g(z)(1− g(z))

Mini-batch stochastic gradient ascent for logistic regression

θj := θj + α
∑
i∈B

(y(i) − h(x(i)))x
(i)
j
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Other g choices: perceptron learning algorithm

Linear regression fails to handle classification problem because its outputs
are not bounded
Logistic regression utilizes a “soft” bounding function (sigmoid function)
to map the values into the range [0, 1]

Perceptron learning: use the following g(z) to bound the outputs of θTx

g(z) =

{
1 if z ≥ 0

0 if z < 0

The hypothesis would then be h(x) = g(θTx)

The hypothesis h is not differentiable. Specific parameter updating scheme
was designed
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Softmax regression for multi-class classification

The outputs are expected to be of one of the k pre-defined classes
For each class i, a conditional probability ϕi = p(y = i|x; Θ) of the input
feature vector x belonging to class y = i is estimated, which satisfy

k∑
j=1

ϕj = 1

For the ith class, a linear model is first utilized to calculate the linear
mapping ΘT

i x, where ΘT
i ∈ Rn+1 and can stored as rows in a matrix

Θ ∈ Rk×(n+1)

The conditional probabilities of each class is then calculated as

p(y = i|x; Θ) = ϕi =
eΘ

T
i x∑k

j=1 e
ΘT

j x

This function involving confidences of multiple classes is called softmax
function. It can be easily check that

∑k
j=1 ϕj = 1
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Softmax regression for multi-class classification

The hypothesis h for softmax regression outputs a k-dimensional vector

hΘ(x) =


ϕ1

ϕ2

...
ϕk

 =



exp(ΘT
1 x)∑k

j=1 exp(Θ
T
j x)

exp(ΘT
2 x)∑k

j=1 exp(Θ
T
j x)

...
exp(ΘT

k x)∑k
j=1 exp(Θ

T
j x)


The learning targets for different classes

1
0
0
...
0

 ,


0
1
0
...
0

 ,


0
0
1
...
0

 , · · · ,


0
0
0
...
1

 .
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Cost function of softmax regression

We use cross-entropy cost function for softmax regression

H(Θ) = −ℓ(Θ) = −
m∑
i=1

log p(y(i)|x(i); Θ)

= −
m∑
i=1

log

k∏
l=1

(
exp(ΘT

l x
(i))∑k

j=1 exp(Θ
T
j x

(i))

)1{y(i)=l}

= −
m∑
i=1

k∑
l=1

1{y(i) = l} log

(
exp(ΘT

l x
(i))∑k

j=1 exp(Θ
T
j x

(i))

)
Gradients for softmax regression, considering one training sample
(x(i), y(i)), would be

∇ΘjH(θ) = −∇Θj log

(
exp(ΘT

y(i)x
(i))∑k

l=1 exp(Θ
T
l x

(i))

)

= −∇Θj

(
ΘT

y(i)x
(i)
)
+∇Θj log

(
k∑

l=1

exp(ΘT
l x

(i))

)
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Gradient descent for softmax regression

If j = y(i), the gradients with respect to Θy(i) :

∇Θj = −x(i) +
exp(ΘT

j x(i))∑k
l=1

exp(ΘT
l
x(i))

x(i) = −(1− exp(ΘT
j x(i))∑k

l=1
exp(ΘT

l
x(i))

)x(i)

If j ̸= y(i), the gradients with respect to Θj :

∇Θj =
exp(ΘT

j x(i))∑k
l=1

exp(ΘT
l
x(i))

x(i)

The parameters could be updated via gradient descent
Θj := Θj − α∇Θj

NOTE: Even for a single sample of a class, parameters of all classes would
be updated

The weights of the ground-truth class Θy(i) would approach the input
features x(i). If the confidence ΘT

y(i)x
(i) is high, the approaching would be

small
The weights of other classes Θj would be pushed away from the input
features x(i). If the confidence ΘT

j x(i) is high, i.e., the magnitude of
pushing away would be high
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Relation to logistic regression

In the special case k = 2, one can show that softmax regression reduces to
logistic regression

h(x) =
1

exp(ΘT
1 x) + exp(ΘT

2 x)

[
exp(ΘT

1 x)
exp(ΘT

2 x)

]
NOTE: This hypothesis is overparameterized. We can subtract Θ1 from
each parameter (equivalent to multiplying the same value on the
numerator and denominator)

h(x) =
1

exp(0Tx) + exp((Θ2 −Θ1)Tx)

[
exp(0Tx)

exp((Θ2 −Θ1)
Tx)

]

=


1

1 + exp((Θ2 −Θ1)Tx)
exp((Θ2 −Θ1)

Tx)

1 + exp((Θ2 −Θ1)Tx)

 =


1

1 + exp((Θ2 −Θ1)Tx)

1− 1

1 + exp((Θ2 −Θ1)Tx)


Substitute Θ2 −Θ1 with a single parameter vector −θ, gives us the same
probability as logistic regression
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