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Outline

1 Recurrent neural networks
Recurrent neural networks
Variants of RNN

2 Advanced RNN Variants
Challenge of long-term dependency
Long Short-Term Memory (LSTM) Net
Gated Recurrent Unit

3 Applications
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Applications

Sequential data

Sequence of words in an English sentence
Acoustic features at successive time frames in speech recognition
Successive frames in video classification
Rainfall measurements on successive days in Hong Kong
Daily values of current exchange rate
Nucleotide base pairs in a strand of DNA
Instead of making independent predictions on samples, assume the
dependency among samples and make a sequence of decisions for
sequential samples
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Applications

Modeling sequential data

Sample data sequences from a certain distribution

P (x1, . . . , xT )

Generate natural sentences to describe an image

P (y1, . . . , yT |I)

Activity recognition from a video sequence

P (y|x1, . . . , xT )
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Applications

Modeling sequential data

Generate natural sentences to describe a video

P (y1, . . . , yT ′ |x1, . . . , xT )

Language translation

P (y1, . . . , yT ′ |x1, . . . , xT )
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Modeling sequential data

Use the chain rule to express the joint distribution for a sequence of
observations

p(x1, . . . , xT ) =

T∏
t=1

p(xt|x1, . . . , xt−1)

Impractical to consider general dependence of future dependence on all
previous observations p(xt|xt−1, . . . , x0)

Complexity would grow without limit as the number of observations
increases
It is expected that recent observations are more informative than more
historical observations in predicting future values
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Markov models

Markov models assume dependence on most recent observations
First-order Markov model

p(x1, . . . , xT ) =
T∏

t=1

p(xt|xt−1)

Second-order Markov model

p(x1, . . . , xT ) =
T∏

t=1

p(xt|xt−1, xt−2)
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Hidden Markov Model (HMM)

A classical way to model sequential data
Sequence pairs h1, h2, . . . , hT (hidden variables) and x1, x2, . . . , xT

(observations) are generated by the following process
Pick h1 at random from the distribution P (h1). Pick x1 from the
distribution p(x1|h1)
For t = 2 to T

Choose ht at random from the distribution p(ht|ht−1)
Choose xt at random from the distribution p(xt|ht)

The joint distribution is

p(x1, . . . , xT , h1, . . . , hT , θ) = P (h1)
T∏

t=2

P (ht|ht−1)
T∏

t=1

p(xt|ht)
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Recurrent neural networks (RNN)

HMM can be considered as a generative model while RNN is a
discriminative model
Model a dynamic system driven by an external signal xt

ht = Fθ(ht−1, xt)

ht contains information about the whole past sequence. The equation
above implicitly defines a function which maps the whole past sequence
(xt, . . . , x1) to the current state ht = Gt(xt, . . . , x1)

Left: Implementation of RNN, viewed as a circuit. The black square indicates a delay
of 1 time step. Right: the same RNN viewed as an unfolded flow graph, where each
node is now associated with one particular time step.

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Recurrent neural networks
Advanced RNN Variants

Applications
Recurrent neural networks
Variants of RNN

Recurrent neural networks (RNN)

The summary is lossy, since it maps an arbitrary length sequence
(xt, . . . , x1) to a fixed length vector ht

Depending on the training criterion, ht keeps some important aspects of
the past sequence.
Sharing parameters: the same weights are used for encoding feature
representations (neuron responses) at different time steps
A similar idea with CNN: replacing a fully connected network with local
connections with parameter sharing
It allows to apply the network to input sequences of different lengths and
predicts sequences of different lengths
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Recurrent neural networks (RNN)

Sharing parameters for any sequence length allows more better
generalization properties. If we have to define a different function Gt for
each possible sequence length, each with its own parameters, we would not
get any generalization to sequences of a size not seen in the training set
One would need to see a lot more training examples, because a separate
model would have to be trained for each sequence length
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A vanilla RNN to predict sequences from input

P (y1, . . . , yT |x1, . . . , xT )

Forward propagation equations, assuming that hyperbolic tangent
non-linearities are used in the hidden units and softmax is used in output
for classification problems

ht = tanh(Wxhxt +Whhht−1 + bh)

zt = softmax(Whzht + bz)

p(yt = c) = zt,c

Prof. LI Hongsheng ELEG 5491: Introduction to Deep Learning



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Recurrent neural networks
Advanced RNN Variants

Applications
Recurrent neural networks
Variants of RNN

Overall Loss Function

The total loss for a given input/target sequence pair (x, y), measured by
the cross entropy, is formulated as

L(x, y) =
T∑

t=1

Lt =
T∑

t=1

−yt log zt
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Gradients on Whz and bz

∂L

∂Lt
= 1,

∂L

∂zt
=

∂L

∂Lt

∂Lt

∂zt
=

∂Lt

∂zt

∂L

∂Whz
=

T∑
t=1

∂Lt

∂zt

∂zt
∂Whz

,
∂L

∂bz
=

T∑
t=1

∂Lt

∂zt

∂zt
∂bz
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Gradients on Whh and Wxh

∂L

∂Whh
=

T∑
t=1

∂L

∂ht

∂ht

∂Whh

∂L

∂ht
=

∂L

∂ht+1

∂ht+1

∂ht
+

∂L

∂zt

∂zt
∂ht
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Predict a single output at the end of the sequence

Such a network can be used to summarize a sequence and produce a
fixed-size representation used as input for further processing
There might be a target right at the end or the gradient on the output zt
can be obtained by back-propagation from further downsteam modules
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Generative RNN modeling P (x1, . . . , xT )

It can generate sequences from this distribution
At the training stage, each xt of the observed sequence serves both as
input (for the current time step) and as target (for the previous time step)
The output zt encodes the parameters of a conditional distribution
P (xt+1|x1, . . . , xt) = P (xt+1|zt) for xt+1 given the past sequence
x1, . . . , xt
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Generative RNN modeling P (x1, . . . , xT )

Loss function: negative log-likelihood of x, L =
∑

t Lt

P (x) = P (x1, . . . , xT ) =
T∏

t=1

P (xt|xt−1, . . . , x1)

Lt = − logP (xt|xt−1, . . . , x1)

In generative mode, xt+1 is sampled from the conditional distribution
P (xt+1|x1, . . . , xt) = P (xt+1|zt) (dashed arrows) and then that generated
sample xt+1 is fed back as input for computing the next state ht+1
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Generative RNN modeling P (x1, . . . , xT )

If RNN is used to generate sequences, one must also incorporate in the
output information allowing to stochastically decide when to stop
generating new output elements
In the case when the output is a symbol taken from a vocabulary, one can
add a special symbol corresponding to the end of a sequence
One could also directly directly model the length T of the sequence
through some parametric distribution. P (x1, . . . , xT ) is decomposed into

P (x1, . . . , xT ) = P (x1, . . . , xT |T )P (T )
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RNNs to represent conditional distributions P (y|x)

If x is a fixed-sized vector, we can simply make it an extra input of the
RNN that generates the y sequence. Some common ways of providing the
extra input

as an extra input at each time step, or
as the initial state h0, or
both

Example: generate caption for an image
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Bidirectional RNNs

In some applications, we want to output at time t a prediction regarding
an output which may depend on the whole input sequence

In speech recognition, the correct interpretation of the current sound
as a phoneme may depend on the next few phonemes because
co-articulation and may depend on the next few words because of the
linguistic dependencies between words

Bidirectional recurrent neural network was proposed to address such need
It combines a forward-going RNN and a backward-going RNN
The idea can be extended to 2D input with four RNN going in four
directions
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Bidirectional RNNs

gt summaries the information from the past sequence, and ht summaries
the information from the future sequence
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Challenge of long-term dependency
Long Short-Term Memory (LSTM) Net
Gated Recurrent Unit

Difficulty of Learning Long-Term Dependencies

Consider the gradient of a loss LT at time T with respect to the
parameter θ of the recurrent function Fθ

ht = Fθ(ht−1, xt)

∂LT

∂θ
=

∑
t≤T

∂LT

∂hT

∂hT

∂ht

∂Fθ(ht−1, xt)

∂θ

∂LT

∂hT

∂hT

∂ht

∂Fθ(ht−1, xt)

∂θ
encodes long-term dependency when T − t is

large
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Challenge of long-term dependency
Long Short-Term Memory (LSTM) Net
Gated Recurrent Unit

Difficulty of Learning Long-Term Dependencies

∂hT

∂ht
=

∂hT

∂hT−1

∂hT−1

∂hT−2
· · · ∂ht+1

∂ht

Each layer-wise Jacobian ∂ht+1

∂ht
is the product of two matrices: (a) the

recurrent matrix W and (b) the diagonal matrix whose entries are the
derivatives of the non-linearities associated with the hidden units, which
variy depending on the time step. This makes it likely that successive
Jacobians have simliar eigenvectors, making the product of these
Jacobians explode or vanish even faster
∂LT

∂θ
is a weighted sum of terms over spans [T, t], with weights that are

exponentially smaller (or larger) for long-term dependencies relating the
state at t to the state at T

The signal about long term dependecies will tend to be hidden by the
smallest fluctuations arising from short-term dependenties
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Challenge of long-term dependency
Long Short-Term Memory (LSTM) Net
Gated Recurrent Unit

Long Short-Term Memory (LSTM) Net

LSTM introduces leaky units or forgetting mechanism
The role of leaky units is to accumulate information over a long duration.
However, once that information gets used, it might be useful for the neural
network to forget the old state

For example, if a video sequence is composed as subsequences
corresponding to different actions, we want a leaky unit to
accumulate evidence inside each subsequnece, and we need a
mechanism to forget the old state by setting it to zero and starting to
count from fresh when starting to process the next subsequence

The forgetting rates are expected to be different at different time steps,
depending on their previous hidden states and current input (conditioning
the forgetting on the context)
Parameters controlling the forgetting rates (not forgetting gates
themselves) are learned from train data
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Challenge of long-term dependency
Long Short-Term Memory (LSTM) Net
Gated Recurrent Unit

Long Short-Term Memory (LSTM) Net

LSTMs also have this chain like structure, but the repeating module has a
different structure
Instead of having a single neural network layer, there are four, interacting
in a very special way
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Challenge of long-term dependency
Long Short-Term Memory (LSTM) Net
Gated Recurrent Unit

Long Short-Term Memory (LSTM) Net

The key to LSTMs is the cell state. It’s very easy for information to just
flow along it unchanged.

The LSTM does have the ability to remove or add information to the cell
state, carefully regulated by structures called gates
Gates are a way to optionally let information through. They are composed
out of a sigmoid neural net layer and a pointwise multiplication operation
The sigmoid layer outputs numbers between zero and one, describing how
much of each component should be let through. A value of zero means
“let nothing through,” while a value of one means “let everything through”
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Challenge of long-term dependency
Long Short-Term Memory (LSTM) Net
Gated Recurrent Unit

Long Short-Term Memory (LSTM) Net

The first step in our LSTM is to decide what information we are going to
throw away from the cell state
This decision is made by a sigmoid layer called the “forget gate layer.” It
looks at ht−1 and xt, and outputs a number between 0 and 1 for each
number in the cell state Ct−1

A 1 represents “completely keep this” while a 0 represents “completely get
rid of this”
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Challenge of long-term dependency
Long Short-Term Memory (LSTM) Net
Gated Recurrent Unit

Long Short-Term Memory (LSTM) net

The next step is to decide what new information we are going to store in
the cell state
First, a sigmoid layer called the “input gate layer” decides which values
we’ll update
Next, a tanh layer creates a vector of new candidate values, Ct, that could
be added to the state
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Challenge of long-term dependency
Long Short-Term Memory (LSTM) Net
Gated Recurrent Unit

Long Short-Term Memory (LSTM) net

Now, it is time to update the old cell state, Ct−1, into the new cell state
Ct

Finally, decide what are going to be output. This output will be based on
our cell state, but will be a filtered version
Run a sigmoid layer which decides what parts of the cell state we are going
to output
Put the cell state through tanh (to push the values to be between -1 and
1) and multiply it by the output of the sigmoid gate to output only a part
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Challenge of long-term dependency
Long Short-Term Memory (LSTM) Net
Gated Recurrent Unit

Gated Recurrent Unit (GRU) network

GRU abandons the cell state and used hidden state to transfer
information. It also only has two gates, a reset gate and update gate
Update gate: it helps the model to determine how much of the past
information (from previous time steps) needs to be passed along to the
future

zt = σ(Wzxt + Uzht−1)
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Challenge of long-term dependency
Long Short-Term Memory (LSTM) Net
Gated Recurrent Unit

Gated Recurrent Unit (GRU) network
Reset gate: it decides how much of the past information to forget when
generating the new memory

rt = σ(Wrxt + Urht−1)

New memory content is calculated as
h′
t = tanh(Wxt + rt ⊙ Uht−1)

Final memory at current time step: it determines what to collect from the
current memory content h′

t and what from the previous steps ht−1?
ht = zt ⊙ ht−1 + (1− zt)⊙ h′

t
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Applications

Sequence-to-sequence language translation
(Sutskever, Vinyals, and Le NIPS 2014)

Model P (y1, . . . ,yT ′ |x1, . . . ,xT ). The input and output sequences have
different lengths, are not aligned, and even do not have monotonic
relationship
Use one LSTM to read the input sequence (x1, . . . ,xT ), one timestep at a
time, to obtain a large fixed-dimensional vector representation v, which is
given by the last hidden state of the LSTM
Then conditioned on v, a second LSTM generates the output sequence
(y1, . . . ,yT ′) and computes its probability

p(y1, . . . ,yT ′ |v) =
T ′∏
t=1

p(yt|v,y1, . . . ,yt−1)

The model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The model stops making predictions after
outputting the end-of-sentence token.
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Applications

Sequence-to-sequence language translation

It requires each sentence ends with a special end-of-sequence symbol
“<EOS>”, which enables the model to define a distribution over
sequences of all possible lengths
It is valuable to reverse the order of the words of the input sequence for
decoding. For example, instead of mapping the sentence a, b, c to the
sentence α, β, γ, the LSTM is asked to map c, b, a to α, β, γ, where α,
β, γ is the translation of a, b, c.
This way, a is in close proximity to α, b is fairly close to β, and so on, a
fact that makes it easy for stochastic gradient descent to “establish
communication” between the input and the output. It introduces many
short term dependencies in the data that make the optimization problem
much easier.
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Sequence-to-sequence language translation

The figure shows a 2-dimensional PCA projection of the LSTM hidden states that are
obtained after processing the phrases in the figures. The phrases are clustered by
meaning, which in these examples is primarily a function of word order, which would
be difficult to capture with a bag-of-words model. The figure clearly shows that the
representations are sensitive to the order of words, while being fairly insensitive to the
replacement of an active voice with a passive voice.
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Sequence-to-sequence language translation

LSTM can correctly translate very long sentences
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Google’s Neural Machine Translation System in 2016
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Generate image captions (Vinyals et al. arXiv 2014)

Use a CNN as an image encoder and transform it to a fixed-length vector
It is used as the initial hidden state of a “decoder” RNN that generates
the target sequence
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Generate image captions

The learning process is to maximize the probability of the correct
description given the image

θ∗ = argmax
∑
(I,S)

logP (S|I; θ)

logP (S|I) =
N∑
t=0

logP (St|I, S0, . . . , St−1)

I is an image and S is its correct description
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Generate image captions

Denote by S0 a special start work and by SN a special stop word
Both the image and the words are mapped to the same space, the image
by using CNN, the words by using word embedding We

The image I is only input once to inform the LSTM about the image
contents
Sampling: sample the first word according to P1, then provide the
corresponding embedding as input and sample P2, continuing like this
until it samples the special end-of-sentence token

x−1 = CNN(I)

xt = WeSt, t ∈ {0, . . . , N − 1}

Pt+1 = LSTM(xt), t ∈ {0, . . . , N − 1}

L(I, S) = −
N∑
t=1

logPt(St)
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Applications

Question Answering and Visual Question Answering
Question Answering

Visual Question Answering
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