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Introduction

® Normalization is a well-known technique in deep learning.

® The first normalization method----Batch Normalization (BN).
BN achieves the same accuracy with 14 times fewer training steps

® Normalization improves both optimization and generalization of a DNN.

® Various normalizers in terms of tasks and network architecture
— Batch Normalization (BN), Image classification (1]
— Instance Normalization (IN), Image style transfer [2]
— Layer normalization (LN), Recurrent Neural Network (RNN) [3]

— Group normalization (GN), robust to batch size, image classification, object detection [4!

Normalization methods have been a foundation of various state-of-the-art
computer vision tasks




Introduction

® Object of normalization method

— a4-D tensor h € RNXCxHXW

NCHW

N- minibatch size (the number of samples) h= {hncij}

HxW f
C- number of channels "
QO
H- height of a channel @ 13
N2 ®
g 1
W- width of a channel - 2
Q D .
o = Convolution
® A very common building block 2 N
£ C o
— Conv+Norm+RelU : _ Normalization
< 4 channel-wise
® They work by standardizing the activations within specific scope. N

® Two statistics: mean u and variance o2
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+ B, | ® Two learnable parameters:

scale parameter y and shift parameter




Various Normalizers-IN, BN, LN and GN

Calculating mean u and variance a2 in different scope produces different normalizers. HxW f
s e &
Given a feature map in DNN hy,;; € RN*OHW, 3
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GN [T CoHW z Ancij » aGN CoHW z (Rncij — 'uGN) computes within each group the mean and
cii=1 cii=1 variance for normalization.




Various Normalizers-SN and SSN

The above-mentioned methods of normalization use the same normalizer in different normalization layer.

Swithchable Normalization (SN) is able to learn different normalizer for each normalization layer I,

Switchable Norm € channels

——
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Instance Norm Layer Norm
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N samples

sy = D1y + D2lpy + D3, Ody = P10Sy + P20y + D308y
Where (pq, p,, p3) = softmax(z,, z,, z3) and z4, z,, z3 are learnable parameters

Z1,Z9, Z3 learned by SGD in different layers could be different




Various Normalizers-SN and SSN

However, SN suffers from overfitting and redundant computation.
— overfitting, z,, z,, z3 are optimized without any constraint.
— redundant computation, compute all statistics in IN, BN and LN in the inference stage

Sparse Switchable Normalization (SSN) is able to learn only one normalizer for each normalization layer [®l,

Statistics in SSN:
Usy = D1l + Dalign + D3lin, Ody = P10sy + D208y + P30dy

sparsemax
softmax

Such thatp; + p, + p3 = 1 and p; € {0,1}

SSN is achieved by a novel transformation ‘SparsestMax’, which is used to
substituted softmax in SN

SparsestMax(z; r) := argmin ||p — z||§ .
peAy ™!




An Unified Representation: Meta Normalization U]

Question. Is there an universal normalization that could include IN, BN, LN, etc. ?

To answer this question, let’s consider the relation between p;y and ugy, Uiy

Taking sum ) duplicate N rows 1r - 1
over each colum gy € R* o) gy = v B L
1 - 1
[.Un ﬂ1c]
Hn1 " Hnc
duplicate C columns Uy = lﬂ [1 1]
NXxC N LN — IN | : % :
Uiy ER Tellding su ppy € RY mom——) C g
over each row




An Unified Representation: Meta Normalization

MN. We can design an universal normalization by constructing binary matrix U and V as follows:

1 1
HMN = (_ U> Uin (— V)
Zu Zy Zy and Zy, are normalizing factor. U € RN*N and V € R*C are

1 1 two binary matrix whose elements are either O or 1
OMN = ( >01N< V)

—U _
Zy Zy

Representation Capacity. In MN, V aggregates the statistics from the channels, while U aggregates those in a batch
of samples. Therefore, different V and U represent different normalization approaches.

@ Let U = and V = I, then MN represents IN.

@ LletU = %1 and V = I, then MN turns into BN.

®letU=] andV = %1, then MN represents LN.

®letU=] andV = % l(l) (1)], then MN represents GN with a group number of 2.




Back-propagation of MN

MN. Let F'na-j be the neuron after normalization, and then it is transformed to
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Back-propagation of MN
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Geometric Interpretation

-1
Projection Matrix. Given a matrix A, we have projection matrix P = A(ATA) AT,
The columns of A, we're given, form a basis for some subspace W, matrix (I — P) is the projection matrix for the

orthogonal complement of W.

Given a vector y, Py lies in subspace W and (I — P)y is in the orthogonal complement of W.

Take BN as an example. Yy
P (I-P)y
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Why Batch Normalization?

BN has been an indispensable component in various networks architectures. The effectiveness of BN
has been uncovered form two aspects: optimization and generalization.

A more fundamental impact of BatchNorm on the training process: it makes the optimization landscape
significantly smoother (8l
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Lipschitzness of the Loss

BN causes the landscape to be more well-behaved, inducing favorable properties in Lipschitz-

continuity.
Let’s first consider the optimization landscape wrt. activation.
BatchNorm
X y X y y Z ~
14 L — W L
(a) Vanilla Network (b) Vanilla Network + Single BatchNorm Layer

Theorem 4.1 (The effect of BatchNorm on the Lipschitzness of the loss). For a BatchNorm network
with loss L and an identical non-BN network with (identical) loss L,

~112 72 2 1 2 1 ~ 22
9 21[" < L (1191 = 5 1. 90,0 = = (90,28,

J

gradient magnitude, empically grows quadratically ,,nded away from zero
captures the Lipschitzness lessthan1l in the dimension
of the loss




Lipschitzness of the Loss

Let’s now turn to consider the optimization landscape wrt. weight.

BatchNorm
X y X y y Z ~
14 L — W L
(a) Vanilla Network (b) Vanilla Network + Single BatchNorm Layer

Theorem 4.4 (Minimax bound on weight-space Lipschitzness). For a BatchNorm network with loss

L and an identical non-BN network (with identical loss L), if
2 Al ’TE
g; = max |[VwL||®,  §; = max H?wﬁH = §; < >

HXTI=A XTI=A - 0;

(47 = mu, = X (Y4, £,95)").




Regularization in BN

Batch normalization implicitly discourages single channel reliance, suggesting an alternative
regularization mechanism by which batch normalization may encourage good generalization
performance.
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Regularization in BN

X L

We explore explicit regularization expression in BN O : O : @

by analyzing a building block in a deep network. g g W g

BN also induces Gaussian priors for g 8 :: g

batch mean ug and batch standard deviation . [1°] of " lo—o 4 o
pug ~ N(up, %) and o ~ N(op, p4:_:l,-; ) (a) a building block (b) a graphical model

These priors tell us that ug and o5 would produce Gaussian noise.

Taking expectation over such noise may give us explicit regularization expression in BN. [11]

Theorem 1 (Regularization of ug,or). Let ( be the

strength (coefficient) of the regularization and the activation

tion be ReLU. Th - . : :
function be ReLU. Then @ regularization strength is inversely proportional to the batch size M.

%ZP:EPE oul(h?) =~ = ZP: (R +¢42, (3) @ up and og produce two different regularization strengths.
7= =t P @ 1 penalizes the expectation of activation, implying that the neuron with
and ¢ = pst T P Z_: (4) larger output may exposure to larger regularization.
from o5 S - ’ expectation of activation I 4 I Y lexpectation of activationl




Normalization in Various Computer Vision Tasks

Image Classification

IN LN BN GN SN §SSN
top-1 716 747 T64 759 769 772

AvsBN | 48 -17 - 05 05 08 Semantic Segmentation
Table 1 Comparisons of top-1 accuracy( %) of ResNet-50 in Ima- ADE20K Cityscapes
geNet validation set. All models are trained with a batch size of 32 mloU,, mloU,,| mloU, mloU,,,

images/GPU. The second row shows the accuracy differences between
BN and other normalization methods.

SyncBN | 364 379 69.7 73.0
GN | 357 36.3 68.4 73.1
SN (8,2) 38.7 392 71.6 754

Object Detection SN(84) | 386 390 | 721 75.8

SSN (8.2) 36.5 37.1 71.1 75.0

backbone head | AP AP; AP;; | AP, AP, AP, SSN(8.4) | 385 39.3 71.7 75.7

BNy - 379 593 411 | 499 411 215 SyncSSN (8.2) 303 398 751 76.2

GN GN [ 383 604 414 | 493 413 229 SyncSSN (8.4) 40.1 403 757 76.3
SN SN P31 6LS 424 1 500 422 234 Table 6 Results in ADE20K validation set and Cityscapes test set
SSN SSN | 391 612 427 | 500 42.6 1229 by using ResNet50 with dilated convolutions. *ss” and “ms” indicate

single-scale and multi-scale inference. SyncBN represents multi-GPU
Table 4 Faster R-CNN+FPN using ResNet50 and FPN with 2x LR synchronization of BN. SyncS5N indicates the BN in 55N i1s synchro-
schedule. BNT represents BN is frozen. The best results are bold. SSN nized across mutli-GPU.
is finetuned from ResNet-50 SSN ImageNet pretrained model.
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