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1. To understand movies is to understand our world

2. Cross-modal & rich resources 

……

Why movies?



A Large Scale Dataset
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• 130K+ Movie Meta Data
• Cast
• Genres
• ……

• 50K+ Trailers
• 45K+ Plot
• 100M+ Images

• Poster
• Profile

• 4000+ Movies
• 1000+ Script

Titanic
11/18/1997

Drama, Romance, Thriller

7.5

In 1996, treasure hunter Brock Lovett and his 
team aboard the research vessel Akademik 
Mstislav Keldysh search the wreck of Titanic for a 
necklace with a rare diamond, the Heart ...
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Molly



Tag-based Understand



7
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In 1996, treasure hunter Brock Lovett and his 
team aboard the research vessel Akademik 
Mstislav Keldysh search the wreck of Titanic for a 
necklace with a rare diamond, the Heart ...
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Tag-based Understand

Tag: genres, plot keywords



Tag-based Understand
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Solution
• Take shot as unit

...
8 shots

Visual
Model

pooling

Visual
Model

Visual
Model

pooling

... ... ...
• Train on trailers
• Sparse sampling on training

Challenge
• Movie is too long!  90min vs. 1min

• Only tag for the whole movie!



Tag-based Understand
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love
dystopia

Visual
Model

Visual
Model

Visual
Model

Visual
Model

Visual
Model

Visual
Model

LSTM

From Trailers to Storylines: An Efficient Way to Learn from Movies
Qingqiu Huang, Yuanjun Xiong, Yu Xiong, Yuqi Zhang, Dahua Lin



Tag-based Understand
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Clips Retrieval by Tags



Story-based Understand
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Scene
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Elements of Story
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Cast



Cast in Movies (CIM)
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• 3348 cast from 630 movies
• More than 1.2M instances
• Bounding box and identity 

are manually annotated
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Leonardo DiCaprio in CIM
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Kate Winslet in CIM



Cast Recognition
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• Face Recognition

-- from MS-Celeb-1M

• Person Re-identification

-- from MARS



Cast Recognition

19

• Most of the instances in movie are without frontal faces

• Clothing and makeup would change a lot

-- Face Recognition Failed

-- Person Re-id Failed



Cast Recognition with Context
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With     Face +  Visual Context +  Social Context

Person-Event

Person-Person

Rose Jack Caledon Molly Ruth BrockEdward



Cast Recognition with Context
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X1 X2 X3 X4Y

X1 X4

X3X2

Y

RANet

FC

FC

FC

FC

CNN

CNN

CNN

CNN

Conv FC

Visual Context Social Context

• Learn instance-specific weights for different regions with a Region Attention Network (RANet)

𝑠𝑠 𝑖𝑖, 𝑗𝑗 = �
𝑟𝑟=1

𝑅𝑅

𝑤𝑤𝑖𝑖𝑟𝑟𝑤𝑤𝑗𝑗𝑟𝑟𝑠𝑠𝑟𝑟 𝑖𝑖, 𝑗𝑗

𝐽𝐽 𝑿𝑿,𝒀𝒀; �𝑭𝑭,𝑷𝑷, |𝑸𝑸 𝑺𝑺,𝑭𝑭 = 𝜓𝜓𝜈𝜈 |𝑿𝑿 𝑺𝑺 + 𝛼𝛼 ⋅ 𝜙𝜙𝑒𝑒𝑒𝑒 𝒀𝒀,𝑿𝑿; �𝑭𝑭, |𝑷𝑷 𝑭𝑭 + 𝛽𝛽 ⋅ 𝜙𝜙𝑝𝑝𝑝𝑝(𝑿𝑿;𝐐𝐐)

• Join person identification with social context learning, including person-person and event-person relations

Unifying Identification and Context Learning for Person Recognition
Qingqiu Huang, Yu Xiong, Dahua Lin Conference of Computer Vision and Pattern Recognition (CVPR) 2018



Visual Matching
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RANet

FC

FC

FC

FC

CNN

CNN

CNN

CNN

Conv FC

Region specific Weights



Unified Formulation with Social Context
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X1 X4

X3X2

Y
X1 X2 X3 X4Y



Unified Formulation with Social Context
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X1 X4

X3X2

Y



Experiments
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Dataset Split

Existing Methods on PIPA Ours

PIPER Naeil RNN MLC Baseline RANet
Fusion

Full 
Model

PIPA

Original 83.05 86.78 84.93 88.20 82.79 87.33 89.73

Album - 78.72 78.25 83.02 75.24 82.59 85.33

Time - 69.29 66.43 77.04 66.55 76.52 80.42

Day - 46.61 43.73 59.77 47.09 65.49 67.16

CIM - - - - - 68.12 71.93 72.56



Experiments
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Query Face Recognition RANet Fusion Full Model

Experiments of Recognition Results Events Discovered by Our Approach



Conclusion
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• A new framework
• Region Attention Network to adaptively combine visual cues
• Unify person identification and context learning in joint inference

• Get state-of-the-art performance on PIPA and CIM

X1 X2 X3 X4Y

X1 X4

X3X2

Y

RANet

FC

FC

FC

FC

CNN

CNN

CNN

CNN

Conv FC

Visual Context Social Context



Cast Search with One Portrait
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Query

Database



Cast Search with One Portrait
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?



Cast Search with One Portrait
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Visual Link
Temporal Link

Person Search in Videos with one Portrait through Visual and Temporal Links
Qingqiu Huang, Wentao Liu, Dahua Lin European Conference of Computer Vision (ECCV) 2018
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Cast Search with One Portrait

• Competitive Consensus
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• Progressive Propagation

• mAP:  33.66% -> 47.41%



Experiments
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IN ACROSS
mAP R@1 R@3 mAP R@1 R@3

FACE 53.55 76.19 91.11 42.16 53.15 61.12
LP 8.19 39.70 70.11 0.37 0.41 1.60

PPCC 63.49 83.44 94.40 62.27 62.54 73.86
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Cast Search with One Portrait
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Cast Search in a Whole Movie



Future Work
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• Memory

• Speech & Subtitle
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Event



Event Retrieval and Localization by Natural Language

37Find and Focus: Retrieve and Localize Video Events with Natural Language Queries
Dian Shao, Yu Xiong, Yue Zhao, Qingqiu Huang, Dahua Lin European Conference of Computer Vision (ECCV) 2018

As the van doors are closed the 
sandstorm zooms in like a swarm of 
angry bees.

Everyone looks up as a string of sand 
whizzes past like an express train.

The weight of the sand presses the 
accelerator on the van, picks up 
speed.

… Everyone looks up as a string of sand whizzes past like an express train. As the van doors are closed the sandstorm 
zooms in like a swarm of angry bees. The weight of the sand presses the accelerator on the van, picks up speed. …
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: Two men are talking outside a building.

: A woman and another man walk away as 
the two men continue their conversation.

: The men engage in a game of pool, shooting 
the balls into the corner pockets and taking turns.

Find
No.1

No.4
(Ground-truth video)

… …
Localization

Ground-truth

Localization

Focus

No.1 → No.5

…

… …

𝑠𝑠1

𝑠𝑠2

𝑠𝑠𝑀𝑀

…

…

𝑠𝑠1

…

𝑠𝑠2

𝑠𝑠𝑀𝑀
… …

…

…

…

…

Find and Focus: Retrieve and Localize Video Events with Natural Language Queries
Dian Shao, Yu Xiong, Yue Zhao, Qingqiu Huang, Dahua Lin European Conference of Computer Vision (ECCV) 2018

Event Retrieval and Localization by Natural Language
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Event Retrieval and Localization by Natural Language



Future Work
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• Story-based Summary

• Caption (Story Telling)



Conclusion



Conclusion
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• A Large-scale Movie Dataset
• Tag-based Understand

• Learn from trailers to get shot-level tag response
• Story-based Understand

• Cast
• Cast recognition with context
• Cast search through visual and temporal links

• Event
• Hieratical framework for video retrieval by natural language

• ……



Thank You

25/03/2019
Qingqiu Huang
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