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Characteristicsof Reinforcement Learning

o What makes reinforcement learning different from other
machine learning paradigms?

There is no supervisor, only a reward signal
Feedback is delayed, not instantaneous

Time really matters (sequential, non i.i.d data)
Agent’s actions affect the subsequent data it receives
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Examplesof ReinforcementLearning

e Fly stunt manoeuvres in a helicopter

o« Manage an investment portfolio

o Control a power station

o« Make a humanoid robot walk

o Play many different Atari games better than humans
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Rewards

e« Areward r,is a scalar feedback signal
o Indicates how well agent is doing at step t
e The agent’s job is to maximize cumulative reward

o Reinforcement learning is based on the reward hypothesis

o All goals can be described by the maximization of
expected cumulative reward
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Examplesof Rewards

o« Manage an investment portfolio
- +ve reward for each $ in bank
o Control a power station

- +ve reward for producing power
- -ve reward for exceeding safety thresholds

e Make a humanoid robot walk

- +ve reward for forward motion
- —ve reward for falling over

o Play many different Atari games better than humans

- +/-ve reward for increasing/decreasing score



Sequential Decision Making

o Goal: select actions to maximize total future reward
o Actions may have long term consequences
e Reward may be delayed

e It may be better to sacrifice immediate reward to gain
more long-term reward

o Examples

- Afinancial investment (may take months to mature)
- Refuelling a helicopter (might prevent a crash in several hours)

- Blocking opponent moves (might help winning chances many
moves from now)
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Agent and Environment

observation action
ﬁ ﬁ
Ot At

reward R



Ry LKE

n.a...- ¢, The Chinese University of Hong Kong

Agent and Environment

« Ateach step t the agent: PN
_ Executes action a, observation '/\ O R AL «)' action
- Receives observation o,

- Receives scalar reward r;

e The environment:

- Receives action a,

- Emits observation o,
- Emits scalar reward r,,

e tincrements at env. step




Environment State

The environment state S; is
the environment's private
representation

l.e. whatever data the
environment uses to pick the
next observation/reward

The environment state Is not
usually visible to the agent
Even if Sf is visible, it may
contain irrelevant information

g\
. £
observation / /<
oV J

environment state sf
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Agent State

e The agent state S/ is the
agent's internal representation guservation

. . . ﬁ
e I.e. whatever information the °r

agent uses to pick the next

action

e le. It Is the Information used
by reinforcement learning
algorithms

10
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Fully Observable Environments

o Full observability: agent o a _—
directly observes environment . ; ;i ffy o
state ==

0 = Sy = S§ = S¢ )

o Agent state = environment - ‘R'
state = information state

e Reward is estimated by a M

reward function

re = (s, ar)
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Information State

e An information state (a.k.a. Markov state) contains all
useful information from the previous time steps

e A state s, is Markov if and only if
p(St+15t, ar) = p(Se1l|se, a, -+, 51,a1)
o The future is independent of the past given the present
e le. The state Is a sufficient statistic of the future
o The environment state is Markov

o Formally, this is a Markov decision process (MDP)

2 O :




Major Components of an RL Agent

o« An RL agent may include one or more of these
components:

- Policy: agent's behaviour function
- Value function: how good is each state and/or action

- Model: agent's representation of the environment

14
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Policy

e A policy is the agent's behaviour

e Itis a mapping function from state to action, e.g.
o Deterministic policy: a = mp(s)

o Stochastic policy: mg(als) = p(at|st)

15
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Value Function and Q-function

o Value function is a prediction of future reward from current
state following the current policy mo(s)

V7(8t) = Yy Bry [1(500.a1) 54
e We also define the Q-function as the future reward from
state and taking action a¢

QW(Sfa at) — Zg:zt Eﬂ'g {?"(Stf, at’)|sta at]
e The value function can therefore be reformulated as
Vﬂ-(st) — E?atwﬂ'(adst)[627T (Sta at)]

16
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Model

e A model predicts what the environment will do next
e P predicts the next state
e R predicts the next (immediate) reward, e.g.

P = p(st+1]st, at)
R® = E[T‘t+1|5t,at]

17
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The Goal of Reinforcement Learning

p(s'ls,a)
Joint probability of states and actions T
po(si,ai,...,sr,ar) = p(s1) H mo(a¢|se)p(Se41[se, ar)
‘ T : t=1" . !
po(T) Markov chain on (s, a)

p((St+1,ai+1)[(se,a)) =
p(8t+1 \St; at)’ﬁe (at+1 |St—|—1)

@
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Joint probability of states and actions T
po(s1,ai,...,sr,ar) = p(s1) H mo(at|se)p(St+1se, at)
\ Y ) t:1 ! Y )
po(T) Markov chain on (s, a)

Final Objective:
Maximizing the expected cumulative rewards

0* = arg mgx Erpo(r) [; 7(S¢, at)]
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Finite and Infinite Horizon Case

o If the overall time step T Is finite, the objective can be
defined as

0* = arg max Erpo(r) [Z 7(st, at)]
t

T
= arg mgxz Es, a,)~po(se,a0) [T (St a¢)]
t=1
e For the infinite time steps,
T

Z E(s, a;)~po(se,ar) r(se, ap)] — E(S,a)wpa(s,a) [r(s,a)]
t=1

0* = a axl
= arg max —
& o T
(in the limit as 7" — o0)

e Inreinforcement learning, we almost always care about
expectation 20
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Reinformance Learning Algorithm

fit a model/
estimate the return

generate samples

(i.e. run the policy)

improve the policy

21
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RL: A Simple Example

fit a model/
estimate the return

s e Sample N samples
(e e e gecording to current policy

improve the policy ZRCRVENAVARI()
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Simple RL with Deep Neural Networks

fit a model/

learn f; such that s; 1 = fs(s:,a
estimate the return fqb t+1 f¢5( t t)

generate samples

(i.e. run the policy)

backprop through f, and r to

improve the polic .
P Sl (rain To(S) = ay

23
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Which Parts are Expensive

N
J(0) = By [Zrt] ~ %erg
t i=1

trivial, fast
fit a model/

estimate the return

learn s;41 = fy(s;,a;)

expensive

(real robot/car/power
grid/whatever:
1x real time, until we

invent time travel
generate samples

(i.e. run the policy)

MuloCo simulator:
up to 10000x real time

0« 0+ aVaJ(0)

improve tt li
improve the policy backprop through f, and r to

train mg(s;) = ay

24
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Why Not Enough?

e Only handles deterministic dynamics
e Only handles deterministic policies

o Only continuous states and actions
o Very difficult optimization problem

~backprop

25
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Stochastic System

o If we have policy and we know the Q-function, then we can
Improve the policy

set 7'(als) = 1 if a = argmax, Q7 (s, a)

o« Compute gradient to increase probability of good actions a
if Q™ (s,a) > V7(s), then a is better than average

modify 7(als) to increase probability of a if Q™ (s,a) > V"™ (s)

e Recall that V is the expecation of Q over all actions

26
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Review of Reinforcement Learning

o Definitions
- Markov Decision Process
o RL objective ' —
- Maximize expected reward
o Structure of RL algorithms S
- Sample generation ‘

- Fitting a model/estimating return
- Policy improvement

o Value functions and Q-functions

27
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Categorizingof RL Algorithms

0* = arg max Erpair) !Z r(st, at)
it

o Policy gradients: directly differentiate the above objective

o Value-based: estimate value function V or Q-function of
the optimal policy (no explicit policy)

e Actor-critic: estimate value function or Q-function of the
current policy, use it to improve policy

e Model-based RL: estimate the transition model
- Use it for planning (no explicit policy)
- Use it to improve a policy

28
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Sampling Efficiency for Different Algorithms

off-policy » on-policy
More efficient Less efficient
(fewer samples) (more samples)
—
model-based model-based off-policy actor-critic on-policy policy evolutionary or
shallow RL deep RL Q-function style gradient gradient-free
learning methods algorithms algorithms

29
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Value-based RL Algorithms

fit a model/ fit V(S) or Q(S, a)

estimate the return

generate samples

(i.e. run the policy)

improve the policy K& 'ﬂ'(s) = argmaxs Q(S, a)

30
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Policy Gradients

fit a model/ evaluate returns
estimate the return [PoEs Zt T(St,at)

generate samples
(i.e. run the policy)

improve the policy IiRaliias Q?QE[Zt ?"(St, a )]

31
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Actor-critic: value functions + policy gradients

fit a model/ fit V(s) or Q(s,a)

estimate the return

generate samples
(i.e. run the policy)

improve the policy 0+ 0+ QVEE[Q(SH 3-3)]

32
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CategorizingRL agents

Value Function

33
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Atariwith Q-functions

e Rules of the game are observation // (| [ ) ation
unknown RS Al e

e Learn directly from
Interactive game-play

e Pick actions on joystick,
see pixels and scores

34
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Policy Gradient Introduction

e The objective of reinforcement learning to maximize the
expected cumulative rewards

0* = arg mng By (r) {Z: r(s¢, at)]

¢ Infinite horizon case

0" = arg meax E(S?a)Npg (s,a) [T(Sa a)]

e Finite horizon case

T

0" = arg mgmx Z Ez‘(shat)mpB (s¢,a¢) [T(St, at)]

t=1
38
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Approximatingthe Expectation

e The ps(7)is a joint probability distribution over all possible
states and actions at all time steps, which is intractable to
evaluate

o« We sample from the current policy 79 and obtain N
sequences of states and actions

J(0) = Erpa(r) {Z”tvaf] ZZ r(Sit, ait)

L sum over samples from 7y

at\St St+1\Staat)
)

L Reca” that p@(Sl, al, . , ST, aT

||::]*~3

po(T) Markov chain on (s, a) *
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Direct Policy Differentiation

o Rewrite the objective function The brobabilty distributon

/
= Erpo(r) (7)) = / mo(7)r(T)dT

J(g) = ETNPe(T) [Z ‘I‘(St, at)

t

Where p@(sl,al, ST,aT

||::]ha

at\St St+1\Sta at)
)

po(T) Markov chain on (s, a)

e The gradient of the objective function w.r.t. the model
parameters can be formulated as

VoJ(0) = /ngg(T)r(T)dT = fﬂg(f)‘?g log wo (7)7(7)dT = Errsry(r)[ Vo log mg(7)r(7)]

where Vome(T) = WQ(T)Vi;T(gT(;) = mp(7)Vglog mg(T)

40
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Direct Policy Differentiation

o The gradient of expected total reward w.r.t parameters is
therefore

Vo (0) = Errr,(r)|[Vologmg(r)r(7)]

o For the joint probability

T
mo(7) = m(s1,a1,- -+ ,s7,ar) = p(s1 H (at|st)p(st+1|st, ar)

¥

.'-I'|

log () = logp(s1) + > _log ma(ay|s;) + log p(si1]se, ar)
t=1

A

[ ]

T
Vo log,p@) + ) " logma(ayls;) + IWQ

t=1

41
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Direct Policy Differentiation

e The gradient is formulated as

T
(Z Vi log mg(ay |s¢)) (Z r(s¢, ﬂt)) ]

t=1 t=1

vﬁ'J(EJ) — ETN?TQ(T}

o The calculation of expectation over 7(7) is untractable
o We can approximate it by sampling from the current policy

N T T
1
Ve (0) = N E (E Vg lﬂg?fﬁ(ﬂz'ﬂsi:t)) (g T(Si,tjﬂmt))
t=1

=1 t=1

fit a model to
estimate return

generate samples
(i.e. run the policy)
; improve the policy

0 0 +aVeJ(0)




The REINFORCE Algorithm

REINFORCE algorithm:

> 1. sample {7} from 7g(as|s;) (run the policy)

| 2. Vo J(0) = ), (Zt Vg log ?Ta(ailﬁ)) (Et*r(si,ai))
3.0+ 0+ aVeJ(0)

N
VoJ(0) = %Z (Z Vo log Wg(ai,t|si’t)> (Z r(si,t,ai,t)>

t=]

L what is this?
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Comparison to Maximum Likelihood

e Very similar to maximum likelihood estimation but use
total reward instead of ground-truth label to supervise

N T T
1
policy gradient: VgyJ(0) ~ ~ E (E Vy IOgWB(az',t|Si,t)) (E T(Sz’,taai,t))
t=1

=1 \t=1

N /T
1
maximum likelihood: VgJuw(0) =~ N Z ( Vo log W@(ai,t|si,t))

=1 t=1
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1 N T T
V.{;J(Q) == ? ( ij ]Ug ’?T;‘](Elhﬂﬁ?,f)) (z T{Sf:h EL;;__;:})

t=1

Exﬂmpll‘ﬂ: ?Tﬁ(ﬂt |5t) — N(fneura.l network (St); E)

1 ;
log mg(ag|s;) = —=||f(s¢) — a||% + const
’ 1 df
Vi log mg(as|s;) = —52_10‘(55) — a;)@

45
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Example: Robot Learn to Walk
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Deep Q-Learning

o Value function maps each state s; = s as the expected
total reward in the future

VW(St) = B, [”“t+1 + Yri41 T ’727°t+2 + s = s}
= Ery [rt41 + YV (8t41) |5t = 8]
— E?T@ [gt’St — 8]

o Q-function (action-value function) is the expected total
reward If taking action a at current state s

Q™ (st ai) = Er, [ris1 +vQ7 (St41,a¢41)|5¢ = s, a; = al

= Er, [9t|8t — S§,at = a]

47
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Q-functions

o The calculation of Q(s, a) can be achieved by a neural
network

o Given a state s, it outputs the expected total future reward
of which action to take given the current state s

48



Q-Learning

o If we assume the current Q-function Is correct, then the
estimated total reward at the next time step should follow
the previous equation

Q(s¢,ar) «— Q(5¢,at) + alripr +ymax Q(sy41, ary1) — Q(se,a))

at41

o Algorithm Learning Target Q-function

- Calculate Q(s¢,at)

- Go to the next state St+1, take an action a¢4+1 that follows ¢-
greedy strategy and calculate the value ‘Q(S¢+1,at41)

- Calculate the learning target
- Update previous Q(s¢,a¢) with learning rate «

e-greedy strategy: }L(&-|S) —

random action , ifp<e pis a random
number in [0,1] 5,

arg max, Q(s,a), otherwise



AT LKE

(o - The Chinese University of Hong Kong

Deep Q-Learning

o Algorithm: using off-policy sample generation

Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise state sy
fort=1.7do
With probability e select a random action a;
otherwise select a; = max, Q*(s¢, a;0)
Execute action a; and observe reward r; and state s¢+1
Store transition ( s¢, as, 74, $¢11 ) in D
Set st41 = St | |
Sample random minibatch of transitions ( St, a¢, 7'¢, S¢4+1) from D

Setas — d 17 for terminal s¢+1
vi = rj +ymaxy Q(St+1,a’;0) for non-terminal s;41

Perform a gradient descent step on (y; — Q(s¢, a;: 9))2
end for

end for °1
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Conclusions

o Reinformance learning is a powerful tool to train deep
neural network with time-delayed reward signals

e It can be generally viewed as a trial-and-error approach to
obtain the optimal networks

o« We only briefly introduced value-based and policy-
gradients-based methods. There are much more to
explore along this direction!

53



