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Characteristics of Reinforcement Learning  

● What makes reinforcement learning different from other 

machine learning paradigms? 

− There is no supervisor, only a reward signal  

− Feedback is delayed, not instantaneous  

− Time really matters (sequential, non i.i.d data)  

− Agent’s actions affect the subsequent data it receives 
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Examples of Reinforcement Learning  

● Fly stunt manoeuvres in a helicopter  

● Manage an investment portfolio  

● Control a power station  

● Make a humanoid robot walk  

● Play many different Atari games better than humans 
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Rewards 

● A reward rt is a scalar feedback signal  

● Indicates how well agent is doing at step t  

● The agent’s job is to maximize cumulative reward 

● Reinforcement learning is based on the reward hypothesis 

 

● All goals can be described by the maximization of 

expected cumulative reward 
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Examples of Rewards  

● Manage an investment portfolio 

− +ve reward for each $ in bank 

● Control a power station 

− +ve reward for producing power 

− −ve reward for exceeding safety thresholds 

● Make a humanoid robot walk 

− +ve reward for forward motion 

− −ve reward for falling over 

● Play many different Atari games better than humans 

− +/−ve reward for increasing/decreasing score 
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Sequential Decision Making 

● Goal: select actions to maximize total future reward 

● Actions may have long term consequences 

● Reward may be delayed 

● It may be better to sacrifice immediate reward to gain 

more long-term reward  

● Examples 

− A financial investment (may take months to mature)  

− Refuelling a helicopter (might prevent a crash in several hours) 

− Blocking opponent moves (might help winning chances many 

moves from now) 
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Agent and Environment 
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Agent and Environment 

● At each step t the agent: 

− Executes action at 

− Receives observation ot 

− Receives scalar reward rt 

● The environment: 

− Receives action at  

− Emits observation ot+1  

− Emits scalar reward rt+1 

● t increments at env. step 
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Environment State 

● The environment state      is 

the environment's private 

representation 

● i.e. whatever data the 

environment uses to pick the 

next observation/reward 

● The environment state is not 

usually visible to the agent 

● Even if       is visible, it may 

contain irrelevant information 
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Agent State 

● The agent state      is the 

agent's internal representation 

● i.e. whatever information the 

agent uses to pick the next 

action 

● i.e. it is the information used 

by reinforcement learning 

algorithms 
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Fully Observable Environments 

● Full observability: agent 

directly observes environment 

state 

 

● Agent state = environment 

    state = information state 

● Reward is estimated by a 

reward function 
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Information State 

● An information state (a.k.a. Markov state) contains all 

useful information from the previous time steps 

● A state st is Markov if and only if 

 

● The future is independent of the past given the present 

● i.e. The state is a sufficient statistic of the future 

● The environment state is Markov 

● Formally, this is a Markov decision process (MDP) 
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Major Components of an RL Agent 

● An RL agent may include one or more of these 

components: 

− Policy: agent's behaviour function 

− Value function: how good is each state and/or action 

− Model: agent's representation of the environment 
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Policy 

● A policy is the agent's behaviour 

● It is a mapping function from state to action, e.g. 

● Deterministic policy:  

● Stochastic policy: 
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Value Function and Q-function 

● Value function is a prediction of future reward from current 

state following the current policy 

 

● We also define the Q-function as the future reward from 

state and taking action  

 

● The value function can therefore be reformulated as  
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Model 

● A model predicts what the environment will do next 

●     predicts the next state 

●     predicts the next (immediate) reward, e.g. 
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The Goal of Reinforcement Learning 
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Joint probability of states and actions 



The Goal of Reinforcement Learning 
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Joint probability of states and actions 

Final Objective: 

Maximizing the expected cumulative rewards 



Finite and Infinite Horizon Case 

● If the overall time step T is finite, the objective can be 

defined as 

 

 

 

● For the infinite time steps,  

 

 

 

● In reinforcement learning, we almost always care about 

expectation 20 



Reinformance Learning Algorithm 
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RL: A Simple Example 
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Sample N samples  

according to current policy 



Simple RL with Deep Neural Networks 
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Which Parts are Expensive 
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Why Not Enough? 

● Only handles deterministic dynamics 

● Only handles deterministic policies 

● Only continuous states and actions 

● Very difficult optimization problem 
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Stochastic System 

● If we have policy and we know the Q-function, then we can 

improve the policy 

 

 

● Compute gradient to increase probability of good actions a 

 

 

 

● Recall that V is the expecation of Q over all actions 
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Review of Reinforcement Learning 

● Definitions 

− Markov Decision Process 

● RL objective 

− Maximize expected reward 

● Structure of RL algorithms 

− Sample generation 

− Fitting a model/estimating return 

− Policy improvement 

● Value functions and Q-functions 
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Categorizing of RL Algorithms 

 

 

● Policy gradients: directly differentiate the above objective 

● Value-based: estimate value function V or Q-function of 

the optimal policy (no explicit policy) 

● Actor-critic: estimate value function or Q-function of the 

current policy, use it to improve policy 

● Model-based RL: estimate the transition model 

− Use it for planning (no explicit policy) 

− Use it to improve a policy 
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Sampling Efficiency for Different Algorithms 
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Value-based RL Algorithms 
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Policy Gradients 
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Actor-critic: value functions + policy gradients 
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Categorizing RL agents 
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Atari with Q-functions 

 

● Rules of the game are 

unknown 

● Learn directly from 

interactive game-play 

● Pick actions on joystick, 

see pixels and scores 
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Example 
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Example 
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Policy Gradient Introduction 

● The objective of reinforcement learning to maximize the 

expected cumulative rewards 

 

 

● Infinite horizon case 

 

 

● Finite horizon case 
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Approximating the Expectation 

● The         is a joint probability distribution over all possible 

states and actions at all time steps, which is intractable to 

evaluate 

● We sample from the current policy      and obtain N 

sequences of states and actions 

 

 

 

 

● Recall that 
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Direct Policy Differentiation 

● Rewrite the objective function 

 

 

 where 

 

● The gradient of the objective function w.r.t. the model 

parameters can be formulated as 

 

 

     where 
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The probability distribution 



Direct Policy Differentiation 

● The gradient of expected total reward w.r.t parameters is 

therefore 

 

● For the joint probability 
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Direct Policy Differentiation 

● The gradient is formulated as 

 

 

● The calculation of expectation over         is untractable 

● We can approximate it by sampling from the current policy 
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The REINFORCE Algorithm 
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Comparison to Maximum Likelihood 

● Very similar to maximum likelihood estimation but use 

total reward instead of ground-truth label to supervise 
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Example: Gaussian Policies 
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Example: Robot Learn to Walk 
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Deep Q-Learning 

● Value function maps each state            as the expected 

total reward in the future 

 

 

 

● Q-function (action-value function) is the expected total 

reward if taking action a at current state s 
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Q-functions 

● The calculation of Q(s, a) can be achieved by a neural 

network 

● Given a state s, it outputs the expected total future reward 

of which action to take given the current state s 
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Q-Learning 

● If we assume the current Q-function is correct, then the 

estimated total reward at the next time step should follow 

the previous equation 

 

● Algorithm 

− Calculate  

− Go to the next state        , take an action          that follows ε-

greedy strategy and calculate the value  

− Calculate the learning target 

− Update previous                  with learning rate  
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Learning Target 

ε-greedy strategy: 
p is a random  

number in [0,1] 

Q-function 



Deep Q-Learning 

● Algorithm: using off-policy sample generation 
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Example 
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Conclusions 

● Reinformance learning is a powerful tool to train deep 

neural network with time-delayed reward signals 

● It can be generally viewed as a trial-and-error approach to 

obtain the optimal networks 

● We only briefly introduced value-based and policy-

gradients-based methods. There are much more to 

explore along this direction! 
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