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Agenda

* Preview of several evaluation datasets of face recognition



LFW Face Verification Protocol

 Labeled faces in the wild (LFW) dataset is a widely used face verification
(1:1) protocol, which contains 6,000 face pairs. In all 6,000 pairs, match
and mismatch pairs each account for half.

Match Pairs Mismatch Pairs

Benjamin Netanyahu Barbara Felt Miller Leticia Dolera

Huang, Gary B., et al. "Labeled faces in the wild: A database forstudying face recognition in unconstrained environments." Workshop on
faces in'Real-Life'Images: detection, alignment, and recognition. 2008.



MegaFace 1M Face ldentification Protocol

 The MegaFace identification dataset includes 1M images of 690K different
Individuals (from Flickr) as the gallery set and 100K photos of 530 unique
Individuals from FaceScrub as the probe set.

‘Fﬂ' .‘ﬂﬂ

Radom sample of MegaFace Photos with provided detections in red

Kemelmacher-Shlizerman, Ira, et al. "The megaface benchmark: 1 million faces for recognition at scale." Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2016.

Ng, Hong-Wei, and Stefan Winkler. "A data-driven approach to cleaning large face datasets." 2014 IEEE International Conference on Image
Processing (ICIP). IEEE, 2014.



Evaluation Criterion

e 1:1 face verification:

 Accuracy

* 1:N face identification

 Accuracy with large number of distractors
« True Accept Rate (TAR) @ False Accept Rate (VAR) (e.g., 99.06% @ 10-2)
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Preview of several different metrics for
training

 Loss functions utilize metrics to evaluate the distance between outputs and

target classes (or samples). Three different types of metrics are widely used
In losses in learning deep face representation.

For a metric, the following conditions are

satisfied:
d(z,y) >0 Euclidean Metric Cosine Metric Inner Product
dlz,y) =0 z=y  We W e
d(z,y) = d(y, x) d=||x — VVJ”? d = cos 6O
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Some Euclidean metric based losses

» Deep learning face representation by joint identification-verification (NIPS
2014)

« FaceNet: A unified embedding for face recognition and clustering (CVPR
2015)

A discriminative feature learning approach for deep face recognition ( ECCV
2016 )



DeeplD2

« The key challenge of face recognition is to develop effective feature representations for
reducing intra-personal variations while enlarging inter-personal differences. DeeplD2
uses both face identification and verification signals as loss functions.
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Here x is the input face image and f is the extracted DeeplD2 vector
(feature vector). Loss function utilize f to compute the cost.

Sun, Yi, Xiaogang Wang, and Xiaoou Tang. "Deep learning face representation from predicting 10,000 classes." CVPR. 2014.
Sun, Vi, et al. "Deep learning face representation by joint identification-verification." NIPS. 2014.



DeeplD2

* DeeplD2 feature vectors are learned under two supervisory signals.

* The identification loss classifies each face image into one of n different identities. Identification is
achieved by an n-way softmax layer, which outputs a probability distribution over the n classes.
Then the distribution is inputted to cross-entropy loss.

* The verification loss encourages features from faces of the same identity to be similar. The
verification signal directly regularizes features and can effectively reduce the intra-personal

variations. N
L Softmanx classifier
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Sun, Yi, Xiaogang Wang, and Xiaoou Tang. "Deep learning face representation from predicting 10,000 classes." CVPR. 2014.
Sun, Yi, et al. "Deep learning face representation by joint identification-verification." NIPS. 2014.



DeeplD2

« Some results of DeeplD2

method

accuracy (%)

high-dim LBP [4]

TL Joint Bayesian [2]
DeepFace [22]
DeeplD [21]
GaussianFace [14]
DeeplD2

95.17 £ 1.13
96.33 £ 1.08
97.35 +£0.25
97.45 £ 0.26
98.52 £+ 0.66
99.15+0.13

true positive rate

Accuracy comparison with the previous
best results on LFW at that time.

High-dim LEF [4]
—— TL Joint Bayesian
DeepFace [22]
DeeplD [21]
zaussianFace [14]

DeeplD2

[2]

0.02 0.04 0.06 0.08
false positive rate

Sun, Yi, Xiaogang Wang, and Xiaoou Tang. "Deep learning face representation from predicting 10,000 classes." CVPR. 2014.
Sun, Yi, et al. "Deep learning face representation by joint identification-verification." NIPS. 2014.
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Triplet Loss (Google FaceNet)

 The network consists of a batch

input layer and a deep CNN _
followed by L2 normalization, which x E@ DEEP ARCHITECTURE |o)|L2|2)| o © Tl_rﬂgt
results in the face embedding. :
Batch
* The Triplet Loss minimizes the
distance between an anchor and a Negative m
.. : Anchor
positive, both of which have the Q‘OLEARNING 40
_ _ T egative
same identity, and maximizes the Anchor
Positive Positive

distance between the anchor and a
negative of a different identity.

Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition and clustering." Proceedings of
the IEEE conference on computer vision and pattern recognition. 2015.



Triplet Loss (Google FaceNet)

« The embedding is represented by f(x). It embeds an image x into a d-
dimensional Euclidean space. Here we want to ensure that an image x{

(anchor) of a specific person is closer to all other images xf (positive) of the

same person than it is to any image x;* (negative) of any other person. The
loss that is being minimized is then

L= Zma«X(O, 1f(@F) = F@D)z = £ (@F) — fa)]z + a)

* In order to ensure fast convergence, the following formulation helps to
select x;* such that

If (@) = F@)l5 < £ (@) — F@P)]l;

Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "FaceNet: A unified embedding for face recognition and clustering.” Proceedings of
the IEEE conference on computer vision and pattern recognition. 2015.



Triplet Loss (Google FaceNet)

« MNIST feature distribution of training with triplet loss
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Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition and clustering." Proceedings of
the IEEE conference on computer vision and pattern recognition. 2015.



Center Loss

 As training approaches, DeeplD2 and Triplet Loss respectively construct loss
functions for image pairs and triplet. However, compared to the image samples, the

number of training pairs or triplets dramatically grows. It inevitably results in slow
convergence and instability.

» Center loss also uses identification loss (softmax cross-entropy loss) as one of

training supervisory signals:
g Sup Yy SIig W 25y,

log
Z ;}, . BWJ’.T.’B?;—I-bj
» Besides softmax loss, an auxiliary loss item is added to gather features in their
corresponding centers:

L=Ls+ ANc
WLz +b
e vi TV
== log gt lefvz—c%llz
j= 1 =1

Wen, Yandong, et al. "A discriminative feature learning approach for deep face recognition." European conference on computer vision.
Springer, Cham, 2016.



Center LoOSS

* Feature visualization of softmax and center loss
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Wen, Yandong, et al. "A discriminative feature learning approach for deep face recognition.” European conference on computer vision.
Springer, Cham, 2016.



Center Loss

« Some results:

Method Images | Networks Acc. on LFW | Acc. on YTF

DeepFace [34] AM 3 97.35% 91.4%

DeepID-2+ [32] - 1 98.70 % - Barebones_FR - cnn Small 59.363 %
DeepID-2+ [32] 5 25 99.47% 98.2% NTechLAB - facenx_small Small | 58.218 %
FaceNet [27] 200M |1 99.63 % 95.1 % 3DiVi Company - tdvm6 Small 33.705 %
Deep FR. [25] 2.6M |1 98.95 % 97.3% Model A Sl 418630
Baidu [21] LM 1 99.137% g Model B- Small | 57.175%
model A 0.7T™M |1 97.37% 91.1%

model B oM 1 99.10% 93.8% Model C- (Proposed) Small |65.234 %
model C (Proposed) 0.7M |1 99.28 % 94.9 %

Identification rates of different methods on

Verification performance of different methods on MegaFace with 1M distractors

LFW and YTF datasets

Wen, Yandong, et al. "A discriminative feature learning approach for deep face recognition." European conference on computer vision.
Springer, Cham, 2016.
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Some Cosine metric based losses

Large-Margin Softmax Loss for Convolutional Neural Networks (ICML 2016)

SphereFace: Deep Hypersphere Embedding for Face Recognition ( CVPR 2017 )

NormFace: L2 Hypersphere Embedding for Face Verification (ACM-MM 2017)

CosFace: Large Margin Cosine Loss for Deep Face Recognition (CVPR 2018)

ArcFace: Additive Angular Margin Loss for Deep Face Recognition (CVPR
2019)

« AdaCos: Adaptively Scaling Cosine Logit for Learning Deep Face
Representation (CVPR 2019)



L-Softmax

» L-softmax casts a novel view on

generalizing the original softmax loss.

* It denote the i-th input feature x;
having the label y;. Then the original
softmax loss can be written as:

1 1 Fy;
L= WZ:L%: ~ 2~ log (g_efj)

7 J

where

ellWy, llllzill cos(8y,)
Lfi, = — 10g Zj GHW«"”“mz” cos(6;)

» L-softmax adds a margin
hyperparameter in the following
formulation:

AN EATTCH
Li=—1
: 8\ W T2 0) 5~ lIWsTlTell eos(0;)

cos(mf), 0<60< us

V(o) = D(0), %<0§7rm

where m is a integer that is closely related to
the classification margin. With larger m, the
classification margin becomes larger and the
learning objective also becomes harder.

Liu, Weiyang, et al. "Large-Margin Softmax Loss for Convolutional Neural Networks." ICML. Vol. 2. No. 3. 2016.
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L-Softmax

Il =Wl Wi
Decision Boun
for Class 1
-~
Decision ad
]iogndary
Decision Boundary
“Decision for Class 2

—

Malgln -

- ® e
o o W: /1@2’ ®o0 o W:
L-Softmax Loss
W iI>1W-l
o
® Decision Boundary
® o ®__ - for Class 1
Fx e~
Boundary 9 /" Becision Decision Boundary
/l Margin_ _ _ for Class 2
~ ﬁ-gz- - ® . Q. W
® g0
L-Softmax Loss
W N I W!||<|| mu W, Decision Boundary
e® . - for Class 1
()
81. 9.‘;;151011 Decision Boundary
- Margin ~ o for Class 2
w: T8 4%, w-
» |
® o
Original Softmax Loss L-Softmax Loss

200

w(6) for softmax loss and L-Softmax loss.

Liu, Weiyang, et al. "Large-Margin Softmax Loss for Convolutional Neural Networks." ICML. Vol. 2. No. 3. 2016.
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L-Softmax

Some results of L-Softmax

Method Outside Data | Accuracy
FaceNet (Schroff et al., 2015) 200M* 99.65
Deep FR (Parkhi et al., 2015) 2.6M 98.95
DeepID2+ (Sun et al., 2015) 300K* 98.70
(Yi et al., 2014) WebFace 97.73
(Ding & Tao, 2015) WebFace 98.43
Softmax WebFace 96.53
Softmax + Contrastive WebFace 97.31
L-Softmax (m=2) WebFace 97.81
L-Softmax (m=3) WebFace 98.27
L-Softmax (m=4) WebFace 98.71
Verification performance (%) on LFW
dataset.

Liu, Weiyang, et al. "Large-Margin Softmax Loss for Convolutional Neural Networks." ICML. Vol. 2. No. 3. 2016.



A-Softmax (SphereFace)

« Compared with L-Softmax, A-Softmax normalized all class weights so that
maps them into a hypersphere. This can make cosine metric more nature.

N MENTICH
Lz' = —1lo
S\ eWui 2] 5 Wil cos(0;)

!

i l19(8y,,)

ell®ill¥(0y, ) +3° ellzil COS(G’j,i))

L; = —log (
J7#Yi

Liu, Weiyang, et al. "Sphereface: Deep hypersphere embedding for face recognition." Proceedings of the IEEE conference on computer
vision and pattern recognition. 2017.



A-Softmax (SphereFace)

2D Hypersphere
Manifold

3D Hypersphere
Manifold

[ Negative Pairs
[ Positive Pairs
max angle (pos. pairs): 1.71
min angle (neg. pairs): 0.30
angular margin: -1.41

0 0.5 1 1.5 2 25 3 3.5
Angle

A-Softmax (m=1)

[ Negative Pairs
Positive Pairs
max angle (pos. pairs): 0.94

min angle (neg. pairs): 0.82
angular margin: -0.12

0 0.5 1 1.5 2 2.5 3 35
Angle

A-Softmax (m=2)

x 10*

[ Negative Pairs
[ Positive Pairs
max angle (pos. pairs): 0.54
min angle (neg. pairs): 1.07
angular margin: 0.53

1 1.5 2 25 3 3.5
Angle

A-Softmax (m=3)

class subset of the CASIA-WebFace dataset.

Liu, Weliyang, et al. "Sphereface: Deep hypersphere embedding for face recognition." Proceedings of the IEEE conference on computer
vision and pattern recognition. 2017.
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A-Softmax (m=4)

 Visualization of features learned with different m by using a 6-



A-Softmax (SphereFace)

Softmax Loss Small 54.855 65.925
Softmax+Contrastive Loss [26] Small 65.219 78.865
Triplet Loss [27] Small 64.797 78.322
L-Softmax Loss [16] Small 67.128 80.423
Softmax+Center Loss [34] Small 65.494 80.146
SphereFace (single model) Small 72.729 85.561
SphereFace (3-patch ensemble) Small 75.766 89.142

Performance (%) on MegaFace challenge.
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Accuracy (%) on LFW and YTF with different number of

Method Models Data LFW | YTF
DeepFace [30] 3 4M* 9735 | 914
FaceNet [22] 1 200M* 99.65 | 95.1

Deep FR [20] 1 2.6M 98.95 | 973
DeeplID2+ [27] 1 300K* 98.70 | N/A
DeepID2+ [27] 25 300K* 99.47 | 93.2
Baidu [15] 1 1.3M* 99.13 | N/A

Center Face [34] 1 0.7M* 99.28 | 94.9
Yietal. [37] 1 WebFace | 97.73 | 92.2

Ding et al. [7] 1 WebFace | 98.43 | N/A
Liuetal. [16] 1 WebFace | 98.71 | N/A
Softmax Loss 1 WebFace | 97.88 | 93.1
Softmax+Contrastive [20] 1 WebFace | 98.78 | 93.5
Triplet Loss [27] 1 WebFace | 98.70 | 934
L-Softmax Loss [ 0] 1 WebFace | 99.10 | 94.0
Softmax+Center Loss [34] 1 WebFace | 99.05 | 944
SphereFace 1 WebFace | 99.42 | 95.0

Accuracy (%) on LFW and YTF dataset.

Liu, Weiyang, et al. "Sphereface: Deep hypersphere embedding for face recognition."” Proceedings of the IEEE conference on computer
vision and pattern recognition. 2017.




NormFace

« NormFace normalized both features and class weights in softmax cross-
entropy loss so that all logits in softmax become cosine metirc.

ef?,,j
Jij =8-cosb;; P ,;=—;
Zkil e.ffi,k

1 N 1 N ARY
ﬁCE:__ZIOgPi;yi :——Zlog C
N i=1 N i—1 D oy elih

where hyper parameter s is the scaling parameter that enlarges the range of
cosine logits

Wang, Feng, et al. "NormFace: | 2 hypersphere embedding for face verification." Proceedings of the 25th ACM international conference on
Multimedia. ACM, 2017.



NormFace
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MNIST 2-D feature The normalization operation and its
visualization gradient in 2-dimensional space.

Wang, Feng, et al. "Normface: | 2 hypersphere embedding for face verification." Proceedings of the 25th ACM international conference on
Multimedia. ACM, 2017.



NormFace

loss function Normalization Accuracy
softmax No 98.28% loss function Normalization Accuracy
softmax + dropout No 98.35%
softmax feature only 98.72% softmax Yes 94.24%
softmax Yes 99.16% + 0.025% C-triplet + center Yes 94.3%
softmax + center Yes 99.17% % 0.017% C-triplet + center + HIK-SVM Yes 94.58%
C-contrasitve Yes 99.15% + 0.017% softmax + C-contrastive Yes 94.34%
C-triplet Yes 99.11% + 0.008% softmax + C-contrastive + HIK-SVM Yes 94.72%
C-triplet + center Yes 99.13% + 0.017% S
softmax + C-contrastive Yes 99.19% + 0.008% YTF resutls. Here normalization indicate w/o

. NormFace operation.
LFW resutls. Here normalization indicate w/o

NormFace operation.

Wang, Feng, et al. "Normface: | 2 hypersphere embedding for face verification." Proceedings of the 25th ACM international conference on
Multimedia. ACM, 2017.



CosFace & ArclFace

« Both CosFace and ArcFace add a margin hyperparameter in NormFace.
Their difference is the location where margins are added. For CosFace,
margin is added on cosine metrics:

B es(cos(ﬁyz i)—m)

1
lec — N Z lo 08 s(cos(é’y i)—m) 4 Z 63005(93',@‘)

1 Jyz

* For ArcFace, margin is added on angular:
3(008(9 .+m))

__Zl 08 s(cos(@ —l—m))_|_Z

scosﬂj
Jj=1,3# yze

* Although their formulatlons are different, their main ideas are same.

Wang, Hao, et al. "Cosface: Large margin cosine loss for deep face recognition." Proceedings of the IEEE CVPR. 2018.
Deng, Jiankang, et al. "Arcface: Additive angular margin loss for deep face recognition." Proceedings of the IEEE CVPR. 20109.



CosFace & ArclFace

CosO1

T _AS®

CosineFace

/q‘;;" Cos62

ArcFace

Decision margins of CosFace and

ArcFace under binary classification case.

Geometrical interpretation of ArcFace.
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A toy experiment of CosFace with different margin on 8 identities with
2D features. The first row maps the 2D features onto the Euclidean
space, while the second row projects the 2D features onto the angular
space. The gap becomes evident as the margin term margin
increases

Wang, Hao, et al. "Cosface: Large margin cosine loss for deep face recognition." Proceedings of the IEEE CVPR. 2018.
Deng, Jiankang, et al. "Arcface: Additive angular margin loss for deep face recognition." Proceedings of the IEEE CVPR. 20109.



CosFace & A

rckFace

97

MF1 9
Method LEW | YTF | oot | veri, s %
Softmax Loss [23] 97.88 | 93.1 54.85 65.92 E 95
Softmax+Contrastive [20] 98.78 93.5 65.21 78.86 =
Triplet Loss [29] 98.70 | 934 | 64.79 | 78.32 @ o
L-Softmax Loss [24] 99.10 | 94.0 67.12 80.42 2 93
Softmax+Center Loss [42] | 99.05 | 944 65.49 80.14 o ioﬂFmaX(LM leNetE,m=0.5)
r rcFace(LMobileNetE,m=0.5
A-Softmax [23] 99.42 | 950 | 7272 | 85.56 N Ne0E R ) &)
A-Softmax-NormFea 9932 | 954 75.42 88.82 91 - CosineFace (LResNet100E-IR,m=0.35)

LMCL 9933 96.1 77.11 89.88 0 ArcFace(LResNet100E-IR, m=0.5)
Comparison of the proposed CosFace with 10° 10°° 107 107 102 107! 10°
state-of-the-art loss functions in face recognition False Positive Rate
community. Methods Rankl @10° | VR@FARI(

| Method | Protocol | MF2 Rankl1 | MF2 Veri. ‘

3DiVi Large 57.04 66.45 Softmax 78.89 94.95
Team 2009 Large 58.93 71.12 Softmax-pretrain, Triplet-finetune 80.6 94.65
NEC Large 62.12 66.84 Softmax-pretrain @ VGG?2, Triplet-finetune 78.87 95.43

GRCCV Large 75.77 74.84 A
SphereFace Large 71.17 84.22 Sphe?eFace(m_él, A=3) 82.95 97.66
CosFace (Single-patch) Large 7411 86.77 CosineFace(m=0.35) 82.75 98.41
CosFace(3-patch ensemble) Large 77.06 90.30 ArcFace(m=0.4) 82.29 08.20
ArcFace(m=0.5) 83.27 98.48

CosFace identification and verification evaluation

on MegaFace C2.

Identification and verification results of different methods on
MegaFace C1.

Wang, Hao, et al. "Cosface: Large margin cosine loss for deep face recognition." Proceedings of the IEEE CVPR. 2018.
Deng, Jiankang, et al. "Arcface: Additive angular margin loss for deep face recognition." Proceedings of the IEEE CVPR. 20109.




AdaCos

* The cosine-based softmax losses and its variants achieve great
success Iin deep learning based face recognition.

« However, hyperparameter settings in these losses have significant

Influences on the optimization path as well as the final recognition
performance.

« Manually tuning those hyperparameters heavily relies on user
experience and requires many training tricks.

fij=s-cos(bi; +1{j =y} -m)
Here take ArcFace as the example:

fi,j
Fij = Z; o ‘ hyperparameters s and m can influence
| probability P; ; by directly computing logit f; ;

N 1 N

fiy.
eliwi
Lcg = —— Zlongi = —— Zlog o

N i=1 N i=1 D b1 elin
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Figure 2. Curves of P; ,,, w.r.t. 0; ,, when choosing different scale parameters. (Left) C' = 2000. (Right) C' = 20000.
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Figure 3. Curves of P; ,, w.r.t. 8; ,, when fixing s = 30 and choosing different margin parameters. (Left) C' = 2000. (Right) C' = 20000.

The effectiveness of hyperparameters s and m can be equal in some degree,
hence reserving one of them can simplify the training. Considering s can enlarge
the range of cosine metric, AdaCos reserve s as the only hyperparameter.
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ef""’yi 5 Cos 0.y,

P;,

fiy; s-cos0; . ]

ervi+ B e + B By analyzing the relationship

B Z 6f’ _ Z es-cosQi’k

k#y; k#y; between s and P; ;, we found that,

given a 6, and its expected P; ,,.(6,),
0 P; . (6p) _ 0 sp= log B; a specified s, will be computed.
00.°> 7 cos Vs

s-cos 0;
For example, let P;,, (6,) have the  — 5 = log B; 10g 2hty: © "
largest rate of change when 6, = 7 CoS 7 COS
is reasonable. ~V2-log(C—1)
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Since it is easy to figure out the dynamic

median 6;,,. of a mini-batch, we then propose

the dynamic AdaCos:

B = % Z B = % Z Z 8 cos i

ic N(E) ieEN () k#£y;

(t) _ log B

S
d
COS Qggd
(V2 log (C —1) t=0,
(1) _ log B
S — 7
’ . plt) t=1,
| cos (mm(z, Bmed))

Here each sample/feature have a specified
scaling parameter.

— Dynamic AdaScale[
—— Fixed AdaScale |

Value of s

Num. of Iteration

Figure 4. The change of the fixed adaptive scale parameter 5y
. . ~(t) ..
and dynamic adaptive scale parameter 5,  when training on the

cleaned WebFace dataset. The dynamic scale parameter §Ef) grad-
ually and automatically decreases to strengthen training supervi-
sions for feature angles 6; ,., which validates our assumption on

the adaptive scale parameter in our proposed AdaScale loss. Best
viewed in color.
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Figure 5. The change of 0; ,, when training on the cleaned
WebFace dataset. 6, ,. represents the angle between the feature
vector of i-th sample and the weight vector of its ground truth cat-
egory 1. Curves calculated by proposed dynamic AdaScale loss,
[2-softmax loss [29], CosFace [41] and ArcFace [&] are shown.
Best viewed in color.

Num. of Iteration
L 25k | 50k | 75k | 100K
Softmax 70.15 | 85.33 | 89.50 | 93.05
[2-softmax [29] 79.08 | 88.52 | 93.38 | 98.22
CosFace [41] 78.17 | 90.87 | 98.52 | 99.37
ArcFace [8] 82.43 | 92.37 | 98.78 | 99.55
Fixed AdaScale 85.10 | 94.38 | 99.05 | 99.63
Dyna. AdaScale | 88.52 | 95.78 | 99.30 | 99.73

Table 2. Convergence rates of different softmax losses. At the
same iterations, training with our proposed dynamic AdaScale loss
leads to the best recognition accuracy.

Method

Size of MegaFace Distractor

100 | 102 | 10° | 100 [ 10° | 10°
12-softmax 99.73% | 99.49% | 99.03% | 97.85% | 95.56% | 92.05%
CosFace 99.82% | 99.68% | 99.46% | 98.57% | 97.58% | 95.50%
ArcFace 99.78% | 99.65% | 99.48% | 98.87% | 98.03% | 96.88%
Fixed AdaScale || 99.85% | 99.70% | 99.47% | 98.80% | 97.92% | 96.85%
Dynamic AdaScale || 99.88% | 99.72% | 99.51% | 99.02% | 98.54% | 97.41%

Identification and verification results of different methods on MegaFace C1.




