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Course Information

* Instructor: Xiaogang Wang
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— Office hours: after class or by appointment
* Instructor: Hongsheng Li
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— Office hours: after class or by appointment
e Tutor: Xihui Liu (leader)
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Course Information
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* Tutor: Yixiao Ge
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— Office hour: after tutorial or by appointment
e Tutor: Hang Zhou

— SHB 304

— zhouhang@link.cuhk.edu.hk
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Course Information

* Lecture time & venue
— Tuesday: 14:30 — 16:15, LT, T.Y. Wong Hall
— Tuesday: 16:30 - 17:15, Mong Man Wai Building
(MMW) LT2
* Unofficial optional tutorials
— Thursday: 14:30-15:15, Basic Med Sci Bldg G18



Course Information

Homework (30%)
Quiz 1 (15%)
Quiz 2 (15%)
Project (40%)
— Topics
* Applications of deep learning
* Implementation of deep learning
e Study deep learning algorithms
— You should submit

* One page proposal and discuss it with tutor (topic, idea, method,
experiments)

* Aterm paper of 4 pages (excluding figures) in maximum, double
column, font size is equal or larger than 10.

* Code and sample data
* Project presentation

— No survey
— No collaboration



Course Information

 Examples of project topics

Implement CNN with GPU and compare its efficiency with Caffe
Fast CPU implementation of CNN

We provide a baseline model of GooglLeNet on ImageNet, and you try
to improve it

Choose one of the deep learning related competitions (such as
ImageNet), and compare your result with published ones

Propose a deep model to effectively learn dynamic features from
videos

Deep learning for speech recognition
Deep learning for object detection



Textbook

* lan Goodfellow and Yoshua Bengio and Aaron
Courville, “Deep Learning,” MIT Press, 2016



Lectures

= e T remens

1 (Jan 8) Introduction

2 (Jan 15) Machine learning basics

3 (Jan 22) Multilayer neural networks Homework 1
4 (Jan 29) Convolutional neural netowrks Homework 2

Chinese New Year Holiday

5 (Feb 12) Optimization for training deep neural networks

6 (Feb 19) Network structures/Quiz 1

7 (Feb 26) Recurrent neural network (RNN) and LSTM

8 (Mar 5) Reinforcement learning & deep learning Homework 3
9 (Mar 12) Generative adversarial networks (GAN) Project proposal
10 (Mar 19) Interpretation and visualization of neural networks

(Prof. Bolei Zhou)

11 (Mar 26) Deep learning for video analysis
(Prof. Dahua Lin)

12 (Apr 2) Deep learning for biomedical applications
(Prof. Shaoting Zhang)

13 (Apr9) Course sum-up/Quiz 2



Tutorials

1 Python/Numpy tutorial

2 Understand backpropagation

3 PyTorch tutorial

4 CNN applications: object detection and semantic

segmentation
Walking through deep learning models
Hands on experiment with debugging models
Final project proposal discussion

Vision and Language

O 00 N o U

Action Recognition

10 Normalization

Hands-on assignments are provided in tutorials. Bring your laptop



Introduction to Deep Learning



Outline

Historical review of deep learning
Understand deep learning

nterpret neural semantics



Machine Learning

Class label
(Classification)

X — |[FX)| — Y

Vector
(Estimation)

Object recognition

- > {dog, cat, horse, flower, ...}

/A

High-resolution
image

Super resolution

Low-resolution image
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Lectures

el | s | Requrements

1(Jan 10 & 12) Introduction
2(Jan 17 & 19) Machine learning basics
3 (Jan 24 & 26) Multilayer neural networks Homework 1

Chinese New Year
4 (Feb 7 & 9) Convolutional neural netowrks Homework 2
5 (Feb 14 & 16) Optimization for training deep neural networks
6 (Feb 21 & 23) Network structures Quiz 1 (Feb 21)
7 (Feb 28 & Mar 2) Recurrent neural network (RNN) and LSTM

8 (Mar 7 &9) Deep belief net and auto-encoder Homework 3
9 (Mar 14 & 16) Reinforcement learning & deep learning Project proposal
10 (Mar 21 & 23) Attention models
11 (Mar 28 & 30) Generative adversarial networks (GAN)

12 (Apr 4 & 6) Structured deep learning Quiz 2 (Apr 4)
13 (Apr 11 & 18) Course sum-up

Project presentation (to be decided)
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Neural Back Convolutional
network propagation neural network

|

Deep

belief net
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Speech

|
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1940s 1986 1998 2006 2011
deep learning results
task hours of DNN-HMM | GMM-HMM
training data with same data
Switchboard (test set 1) 309 18.5 274
Switchboard (test set 2) 309 16.1 23.6
English Broadcast News | 50 17.5 18.8
Bing Voice Search 24 30.4 36.2
(Sentence error rates)
Google Voice Input 5,870 12.3
Youtube 1,400 47.6 523

Deep Networks Advance State of Art in Speech /¥

Deep Learning leads to breakthrough in speech recognition at MSR.

Ny
Microsoft



Neural Back Convolutional Deep
network propagation neural network  belief net Speech
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Not well accepted by the vision community @




Neural Back Convolutional Deep
network propagation neural network  belief net Speech
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LeCun’s open letter in CVPR 2012

So, I’'m giving up on submitting to computer vision conferences altogether. CV
reviewers are just too likely to be clueless or hostile towards our brand of
methods. Submitting our papers is just a waste of everyone’s time (and incredibly
demoralizing to my lab members)

| might come back in a few years, if at least two things change:

- Enough people in CV become interested in feature learning that the probability
of getting a non-clueless and non-hostile reviewer is more than 50% (hopefully
[Computer Vision Researcher]’s tutorial on the topic at CVPR will have some
positive effect).

- CV conference proceedings become open access.



Neural Back Convolutional Deep ImageNet
network propagation neural network  belief net Speech (vision)

v | V| B

1940s 1986 1998 2006 2011 2012

Rank | Name ______|Errorrate | Description

1 U. Toronto 0.15315 Deep learning

2 U. Tokyo 0.26172 Hand-crafted

3 U. Oxford 0.26979  featuresand
learning models.

4 Xerox/INRIA 0.27058

Bottleneck.

Object recognition over 1,000,000 images and 1,000 categories (2 GPU)

Current best result < 0.03

A. Krizhevsky, L. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” NIPS, 2012.
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ImageNet Object Detection Task

e 200 object classes
* 60,000 test images
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CUHK

MSRA GBD-Net
ResNet 66.3%
CUHK 62.0%
Google DeeplD-Net
GoogleNet 50.3%
43.9%

UvVA-Euvision
22.581%

ILSVRC 2013  ILSVRC 2014 CVPR’15 ILSVRC 2015 ILSVRC 2016






Network Structures

AlexNet

GoogleNet

ResNet
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Deep Learning Frameworks

O PyTorch
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Pedestrian Detection

E | False positive detected by True positives detected by
s il LatSVM-V2, but not ours ours but not LatSvM-Vv2



Pedestrian detection on Caltech
(average miss detection rates)

HOG+SVM
68% HOG+DPM

63%
Joint DL
39%
i DL aided by
semantic tasks Pre-trained on
17% ImageNet
- -

W. Ouyang and X. Wang, “Joint Deep Learning for Pedestrian Detection,” ICCV 2013.

Y. Tian, P. Luo, X. Wang, and X. Tang, “Pedestrian Detection aided by Deep Learning
Semantic Tasks,” CVPR 2015.

Y. Tian, P. Luo, X. Wang, and X. Tang, “Deep Learning Strong Parts for Pedestrian Detection,”
ICCV 2015.



10 BREAKTHROUGH

= TECHNOLOGIES 2013

Introduction [he 10 Technologies

DeepLearning

With massive
amounts of
computational power,
machines can now
recognize objects and
translale speech in
real time. Artificial
intelligence is finally
getting smart.

Temporary Social
Media

Messages that guickly
self-destruct could
enhance the privacy
of online
communications and
make people freer to
be spontaneous.

Prenatal DNA
Sequencing

Reading the DMNA of
fetuses will be the
next frontier of the
genomic revolution.
But do you really want
to know about the
genetic problems or
musical aptitude of
your unborn child?

Additive
Manufacturing

Skeptical about 3-D
printing? GE, the
world's largest
manufacturer, is on
the verge of using the
technology to make
et parts.

Memorylmplants

A maverick
neurcscientist
believes he has
deciphered the code
by which the brain
forms long-term
memories. Mext:
testing a prosthetic
implant for people

suffering from long
Yorm mamarnd lmee

Smart Watches

The designers of the
Pebble watch realized
that a mobile phone is
more useful it you

don't have to take it
il AaF vmiiE el ol

Ultra-Efficient Solar
Power

Doubling the
efficiency of a solar
cell would completely
change the
economics of
renewable energy.
Manotechnology just

might make it
el

Big Datafrom Cheap
Phones

Collecting and
analyzing information
from simple cell
phones can provide
surprising insights into
how people move
about and behave -
and even help us

understand the
enmraard AF dieasose

Pasl Year:

Baxter: The Blue-
Collar Robot

Rodney Brooks's
newest creation is

easy to interact with,
but the complex
innovations behind the
robol show just how
hard it is to get along
with people. )

Supergrids

A new high-power
circuit breaker could
finally make highly

efficient DC power
frFirde mracstie sl



Neural Back Convolutional Deep ImageNet Language

network propagation neural network belief net Speech (vision) (LSTM)
1940s 1986 1998 2006 2011 2012 2014
Language translation L = ¥ — ¥ ! T — T ! ¥

A group of people

4 Vision Language d
Deep CNN Generating ShOPPmQ at an
RNN outdoor market.

O

Image caption generation

> @ There are many
vegetables at the
fruit stand.

Natural language processing Deep learning Computer vision



Neural Back Convolutional Deep ImageNet Language
network propagation neural network belief net Speech (vision) (LSTM)
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Neural Back Convolutional Deep ImageNet Language

network propagation neural network belief net Speech (vision) (LSTM)
1940s 1986 1998 2006 2011 2012 2014
Turing test C]
Machine Z

L

s
Strong Al l
Person X
Person A

Weak Al
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13 (Apr9) Course sum-up/Quiz 2



MIT

Technology
Review

BUSINESS MEWS

Is Google Cornering the
Market on Deep Learning?

A cutting-edge corner of science is being wooed by Silicon Valley, to
the dismay of some academics.

By Antonio Regalado on January 29, 2014

How much are a dozen deep-learning researchers
worth”? Apparently, more than $400 million.

Yoshua Bengio, an Al researcher at the University of Montreal, estimates that there are
only about 50 experts worldwide in deep learning, many of whom are still graduate
students. He estimated that DeepMind employed about a dozen of them on its staff of
about 50. “I think this is the main reason that Google bought DeepMind. It has one of the
largest concentrations of deep learning experts,” Bengio says.



Neural Back Convolutional Deep

network propagation neural network belief net

R 2

ImageNet Language AlphaGo
Speech  (vision) (LSTM) (Reinforcement Learning)

R IR A

—

1940s 1986 1998 2006

At last — a computer program that
can beat a champion Go player PAGE 484

ALL SYSTEMS GO

CONSERVATION RESEARCH ETHICS POPULAR SCIENCE D NATUREASHA.COM

SONGBIRD
A LA CART

2011 2012 2014 2015

s

1920 CPU and 280 GPU



Neural Back Convolutional Deep ImageNet Language AlphaGo More models
network propagation neural network belief net Speech (vision) (LSTM) (RL)

IR 2NN 2N 2N 2R 2N 2N A

—

1940s 1986 1998 2006 2011 2012 2014 2015 2016

Q: what is the color of the bird? A:
white

what is the of the bird ?

Attention models



Neural Back Convolutional Deep ImageNet Language AlphaGo More models
network propagation neural network belief net Speech (vision) (LSTM) (RL) e
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Outline

* Historical review of deep learning
* Understand deep learning
* Interpret Neural Semantics



Highly complex neural
networks with many layers,
millions or billions of
neurons, and sophisticated
architectures

Fit billions of training samples

Deep learning

Trained with GPU clusters
with millions of processors



Machine Learning with Big Data

* Machine learning with small data: overfitting, reducing model complexity
(capacity), adding regularization

* Machine learning with big data: underfitting, increasing model complexity,
optimization, computation resource

Al system
Prediction accuracy

/ A
Engine Dee.p
learning

Deep learning

Other machine learningtools

Big data

Fuel - —
Size of training data



Pattern Recognition = Feature + Classifier

Feature Learning vs Feature Engineering
Deep Learning




Pattern Recognition System

Input

v

sensing

v

preprocessing

v

feature extraction

v

classification

v

Decision: “salmon” or “sea bass”




Neural Responses are Features

Human brain
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Way to Learn Features?

Images from ImageNet
will class labels

Learn feature
representations from
image classification task

= X
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e\

How does human brain
learn about the world?




Deep Learning is a Universal Feature Learning Engine

Predict 1,000 classes

1

Feature transform

Feature transform

ik

Images from
ImageNet

Learning features from ImageNet

84%
48%

Image segmentation (accuracy)
81%

Object detection (accuracy)

85%

B I

Object tracking (precision)

Can be well applied to many other vision
tasks and datasets and boost their
performance substantially



Deep Learning is a Universal Feature Learning Engine

Features learned from ImageNet serve as the engine driving many vision problems



How to increase model capacity?

Curse of dimensionality

Y

Blessing of dimensionality

b

Learning hierarchical feature transforms
(Learning features with deep structures)



296 layers

The size of the deep neural network keeps increasing

152 layers

22 layers

5 layers -

AlexNet (Google) 2012 GoogleNet (Google) 2014  ResNet (Microsoft) 2015  GBD-Net (Ours) 2016




 The performance of a pattern recognition system heavily
depends on feature representations

Feature engineering Feature learning

Reply on human domain knowledge Make better use of big data
much more than data

If handcrafted features have multiple Learn the values of a huge number of
parameters, it is hard to manually tune parameters in feature representations
them

Feature design is separate from training  Jointly learning feature transformations

the classifier and classifiers makes their integration
optimal
Developing effective features for new Faster to get feature representations for

applications is slow new applications



Handcrafted Features for Face Recognition

2 parameters 3 parameters

vaRRN Y EREY
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. 5 0
Geometric features Pixel vector Gabor filters Local binary patterns

| | | |

1980s 1992 1997 2006



Design Cycle

Domain knowledge

Preprocessing and feature
design may lose useful
information and not be

optimized, since they are not

parts of an end-to-end
learning system

Preprocessing could be the
result of another pattern
recognition system

start

=

Choose and
design model

e

=

end

Interest of people working
on computer vision, speech
recognition, medical image
processing,...

Interest of people working
on machine learning

Interest of people working
on machine learning and
computer vision, speech
recognition, medical image
processing,...




Face recognition pipeline

Face
alignment

Geometric
rectification

Photometric
rectification

Feature
extraction

Classification




Design Cycle
with Deep Learning

Learning plays a bigger role in the
design cycle

Feature learning becomes part of the
end-to-end learning system

Preprocessing becomes optional
means that several pattern
recognition steps can be merged into
one end-to-end learning system

Feature learning makes the key
difference

We underestimated the importance
of data collection and evaluation

start

end




What makes deep learning successful
in computer vision?

Li Fei-Fei Geoffrey Hinton

B IMAGENET

One million images Predict 1,000 image CNN is not new
with labels categories .
Design network structure

New training strategies

Feature learned from ImageNet can be well generalized to other tasks and datasets!



Learning features and classifiers separately

* Not all the datasets and prediction tasks are suitable
for learning features with deep models

Training
stage A

‘ Dataset A ‘

Training

Dataset B ‘ stage B

Deep
learning

Classifier 1 ‘

Classifier 2 ‘

Y

Prediction
on task 1

+

Prediction
on task 2

Classifier B ‘

l

Prediction on task B
(Our target task)




Deep Learning Means Feature Learning

* Deep learning is about learning hierarchical feature

representations
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* Good feature representations should be able to disentangle
multiple factors coupled in the data

@ E n Identity: face recognition Pixel n ﬂJ‘]—)view
- O

Pose: pose estimation Pixel 2 Ideal
—>| Feature —> ﬂ
Expression: expression recognition Transform PS

[evececenree |

I @ Age: age estimation Pixel 1 expression




Example 1: General object detection on ImageNet

* How to effectively learn features with deep models

— With challenging tasks
— Predict high-dimensional vectors

Feature
Pre-train on Fine-tune on ':> representation
classifying 1,000 '::)' classifying 201 @
categories categories
SVM binary
Detect 200 object classes on ImageNet classifier for each
category

W. Ouyang and X. Wang et al. “DeeplID-Net: deformable deep convolutional neural
networks for object detection”, CVPR, 2015



Training stage A

‘ Dataset A

Training stage B

|

Dataset B ‘

Classifier A ‘

Y

Classifier B ‘

Distinguish 1000
categories

A 4

Training stage C

Dataset C

!

feature
transform

|

o]

l

Distinguish 201
categories

Distinguish one
object class from
all the negatives

Fixed



Example 2: Pedestrian detection aided by deep
learning semantic tasks

Vehicle
Horizontal

Tree
Vertical

Vehicle
Vertical

Y. Tian, P. Luo, X. Wang, and X. Tang, “Pedestrian Detection aided by Deep Learning Semantic
Tasks,” CVPR 2015
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Example 3: deep learning face identity features
by recovering canonical-view face images
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Reconstruction examples from LFW

Z. Zhu, P. Luo, X. Wang, and X. Tang, “Deep Learning Identity Preserving Face Space,” ICCV 2013.



 Deep model can disentangle hidden factors through feature
extraction over multiple layers

* No 3D model; no prior information on pose and lighting condition
 Model multiple complex transforms

* Reconstructing the whole face is a much strong supervision than
predicting 0/1 class label and helps to avoid overfitting

Feature Extraction Layers Reconstruction Layer
n,;=48 X 48 X32

FIP

2=24X24X32 n,=24X24X32

n,=96 X 96

ny,=96 X 96

4
; W
5X5 Locally 5X5 Locally 5X5 Locally M A ; Fully
Connected and Connected and . . Connected | maai  Connected Yy
Pooling Pooling ‘ ‘ Pt
doid 124

Arbitrary view Canonical view
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Deep learning 3D model from 2D images,
mimicking human brain activities

e e
5 it > e
bl

Z. Zhu, P. Luo, X. Wang, and X. Tang, “Deep Learning and Disentangling Face Representation by Multi-View
Perception,” NIPS 2014.




Comparison on Multi-PIE

LGBP [26] 37.7 62.5 59.2 36.1 593 V
VAAM [17] 74.1 91 95.7 95.7 895 748 869 V
FA-EGFC[3] 84.7 95 99.3 99 929 85.2 92.7

SA-EGFCI[3] 93 98.7 99.7 99.7 983 936 972 V¥

LE[4] + LDA 869 955 999 99.7 955 818 93.2 X
CRBM[9] + LDA 80.3 90.5 949 96.4 883 89.8 87.6 X

Ours 95.6 98.5 100.0 99.3 985 97.8 98.3 X
[3] A. Asthana, T. K. Marks, M. J. Jones, K. H. Tieu, and M. Rohith. Fully [17] S.Li, X. Liu, X. Chai, H. Zhang, S. Lao, and S. Shan. Morphable displacement
automatic pose-invariant face recognition via 3d pose normalization. In ICCV, field based image TﬂlChlllg for face recognition across pose. In ECCV, pages
pages 937-944, 2011. 1,5, 6 102-115.2012. 1,2, 5,6

[4] Z. Cao, Q. Yin, X. Tang, and J. Sun. Face recognition with learning-based [26] W. Zhang, S. Shan, W. Gao. X. Chen, and H. Zhang. Local gabor binary

descriptor. In CVPR, pages 2707-2714, 2010. 2, 3,6 pattern histogram sequence (lgbphs): A novel non-statistical model for face
T representation and recognition. In ICCV, volume 1, pages 786-791, 2005. 5, 6

[9] G. B. Huang, H. Lee, and E. Learned-Miller. Learning hierarchical represen-
tations for face verification with convolutional deep belief networks. In CVPR,
pages 2518-2525, 2012. 3,6



Training stage A Training stage B

Face images in Two face images
arbitrary views in arbitrary views
feature .
Fixed
Deep transform
learning

!

Linear Discriminant

Regressor 1 Regressor 2

analysis
y Y !
Reconstruct || Reconstruct The two images
view 1 view 2 belonging to the
same person or not

Face reconstruction Face verification



Deep Structures vs Shallow Structures
(Why deep?)



Shallow Structures

* Athree-layer neural network (with one hidden layer) can
approximate any classification function

* Most machine learning tools (such as SVM, boosting, and

KNN) can be approximated as neural networks with one or
two hidden layers

* Shallow models divide the feature space into regions and

match templates in local regions. O(N) parameters are needed
to represent N regions

SVM  9(z) =b+ > a;iK(z, ;)




Deep Machines are More Efficient for
Representing Certain Classes of Functions

* Theoretical results show that an architecture with insufficient
depth can require many more computational elements,
potentially exponentially more (with respect to input size),
than architectures whose depth is matched to the task
(Hastad 1986, Hastad and Goldmann 1991)

* It also means many more parameters to learn



Take the d-bit parity function as an example

. d .
X, ... X d 1, if >°i_ 4 Xiseven
X X €401} +__>{ —1. otherwise

d-bit logical parity circuits of depth 2 have exponential
size (Andrew Yao, 1985)

Q@ " 0

Reuse partial © @@
computation : @ @

¢ QY ®
\; @ 3‘ \;
@ @

@ ®

% X LV ¥

Shallow structure Deep structure

There are functions computable with a polynomial-size logic
gates circuits of depth k that require exponential size when
restricted to depth k -1 (Hastad, 1986)



* Architectures with multiple levels naturally provide sharing
and re-use of components

Honglak Lee, NIPS'10



Humans Understand the World through
Multiple Levels of Abstractions

 We do not interpret a scene image with pixels

— Objects (sky, cars, roads, buildings, pedestrians) -> parts (wheels,
doors, heads) -> texture -> edges -> pixels

— Attributes: blue sky, red car

* Itis natural for humans to decompose a complex problem into
sub-problems through multiple levels of representations

bullding




Humans Understand the World through
Multiple Levels of Abstractions

 Humans learn abstract concepts on top of less abstract ones

* Humans can imagine new pictures by re-configuring these
abstractions at multiple levels. Thus our brain has good
generalization can recognize things never seen before.

— Our brain can estimate shape, lighting and pose from a face image and
generate new images under various lightings and poses. That’s why we

have good face recognition capability.



Local and Global Representations

Global representation . Blue eyes? (1/0)

Local representation



Human Brains Process Visual Signals
through Multiple Layers

* Avisual cortical area consists of six layers (Kruger et al. 2013)

Hyppocampus Prefrontal cortex
Memory (non motor) FEF, SC, Occulomotor
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 The way these regions carve the input space still
depends on few parameters: this huge number of
regions are not placed independently of each other

 We can thus represent a function that looks
complicated but actually has (global) structures




How do shallow models increase the
model capacity?

* Typically increase the size of feature vectors

Prediction accuracy

A
Deep learning

Other machine learning tools

Size of training data

D. Chen, X. Cao, F. Wen, and J. Sun. Blessing of dimensionality: Highdimensional feature and its efficient
compression for face verification. In Proc. IEEE Int’| Conf. Computer Vision and Pattern Recognition, 2013.



Joint Learning vs Separate Learning

Training or
manual design

Training or
manual design

|

|

Manual
design

!

Feature
extraction

Classification

Feature
transform

Data N Preprocessing Preprocessing
collection step 1 step 2
?@ 2] Al
Data Feature Feature
collection transform transform

End-to-end learning

Classification

Deep learning is a framework/language but not a black-box model

Its power comes from joint optimization and

increasing the capacity of the learner




We jointly learn
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* N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
CVPR, 2005. (6000 citations)

* P. Felzenszwalb, D. McAlester, and D. Ramanan. A Discriminatively Trained,
Multiscale, Deformable Part Model. CVPR, 2008. (2000 citations)

 W. Ouyang and X. Wang. A Discriminative Deep Model for Pedestrian Detection
with Occlusion Handling. CVPR, 2012.



Our Joint Deep Learning Model

Convolutional Average Convolutional Deformation V'S'P"'ty
) reasoning and

layer 1 pooling layer 2 layer : )
classification

OF
= 40 O0-0 O)

20| =

W. Ouyang and X. Wang, “Joint Deep Learning for Pedestrian Detection,” Proc. ICCV, 2013.



Modeling Part Detectors

* Design the filters in the second
convolutional layer with variable sizes

LevelS{I [H

Level 2

Level 1

I
ndL2ATR

@
ol
1l

K |
~ _/

Part models

Part models learned
from HOG

Head-torso
at level 3

Head-shoulder Legs
at level 2 at level 2

. i i
|
.

Full-body Torso
at level 3 at level 2

Head-shoulder
at level 3

Learned filtered at the second
convolutional layer



Deformation Layer

Summed map

Part score

M, D,

Part detection
map

Deformation maps




Visibility Reasoning with Deep Belief Net

h;’
Level 2

h,!

Level 1

3:10(}JT‘ wh +_CL+1_+_gL+1 l+1)

Correlates with part detection score



Experimental Results

e Caltech — Test dataset (largest, most widely used)
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Experimental Results

e Caltech — Test dataset (largest, most widely used)
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Rapid object detection using a boosted cascade of simple features

P Viola, M Jones - ... Vision and Pattern Recognition, 2001. CVPR ..., 2001 - ieeexplore.ieee.org.org
Abstract This paper describes a machine learning approach for visual object detection which |

Is capable of processing images extremely rapidly and achieving high detection rates. This

work is distinguished by three key contributions. The first is the infroduction of a new ...

Cited by 7647 Related articles  All 201 versions Import into BibTeX More«




Experimental Results

e Caltech — Test dataset (largest, most widely used)
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Histograms of oriented gradients for human detection

N Dalal, B Triggs - ... and Pattern Recognition, 2005. CVPR 2005 ..., 2005 - ieeexplore.ieee.org
... We study the issue of feature sets for human detection, showing that lo- cally normalized
Histogram of Oriented Gradient (HOG) de- scriptors provide excellent performance relative

to other ex- isting feature sets including wavelets [17,22]. ...
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Experimental Results

e Caltech — Test dataset (largest, most widely used)
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PF Felzenszwalb, RB Girshick... - Pattern Analysis and ..., 2010 - ieeexplore.ieee.org

Abstract We describe an object detection system based on mixtures of multiscale
deformable part models. Our system is able to represent highly variable object classes and
achieves state-of-the-art results in the PASCAL object detection challenges. While ...

Cited by 964 Related articles All 43 versions
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Experimental Results

e Caltech — Test dataset (largest, most widely used)
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W. Ouyang and X. Wang, "A Discriminative Deep Model for Pedestrian Detection with Occlusion Handling,” CVPR 2012.

W. Ouyang, X. Zeng and X. Wang, "Modeling Mutual Visibility Relationship in Pedestrian Detection ", CVPR 2013.
W. Ouyang, Xiaogang Wang, "Single-Pedestrian Detection aided by Multi-pedestrian Detection ", CVPR 2013.
X.Zeng, W. Ouyang and X. Wang, ” A Cascaded Deep Learning Architecture for Pedestrian Detection,” ICCV 2013.
W. Ouyang and Xiaogang Wang, “Joint Deep Learning for Pedestrian Detection,” IEEE ICCV 2013.



Large learning capacity makes high dimensional
data transforms possible, and makes better use
of contextual information



 How to make use of the large learning capacity of
deep models?
— High dimensional data transform
— Hierarchical nonlinear representations

,. SVM + feature @ E LM
J smoothness, shape prior... |
Output [ eeee |[eeee ||eeee

Oanaws

High-dimensional |
data transform 00000000000

I ,
Input %




Face Parsing

* P. Luo, X. Wang and X. Tang, “Hierarchical Face
Parsing via Deep Learning,” CVPR 2012




Training Segmentators
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Big data

Challenging supervision task
with rich predictions

Rich information

How to make use of it?

Hierarchical
feature learning

Capture
contextual information

Reduce|capacity

Joint
optimization

Go wider

Domain

Go deeper knowledge

Make learning more efficient



Outline

* Historical review of deep learning
* Understand deep learning
* Interpret neural semantics



DeeplD2: Joint Identification (ld)-
Verification (Ve) Signals

Verif( f;, f;, vij,

BUE)
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Y. Sun, X. Wang, and X. Tang. NIPS, 2014.



Biological Motivation

Dorsal

t> Ant.

* Monkey has a face-processing network that is made of six
interconnected face-selective regions

* Neurons in some of these regions were view-specific, while
some others were tuned to identity across views

* View could be generalized to other factors, e.g. expressions?

Winrich A. Freiwald and Doris Y. Tsao, “Functional compartmentalization and viewpoint generalization
within the macaque face-processing system,” Science, 330(6005):845—-851, 2010.



Deeply learned features are moderately sparse

The binary codes on activation patterns are
very effective on face recognition

Save storage and speedup face search
dramatically

Activation patterns are more important than
activation magnitudes in face recognition

Joint Hamming distance
CEVESELR ) (%)
n/a

Combined model 99.47
(real values)

Combined model 99.12 97.47
(binary code)



Deeply learned features are selective to
identities and attributes

* With a single neuron, DeeplD2 reaches 97% recognition
accuracy for some identity and attribute
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Deeply learned features are selective to
identities and attributes

* Excitatory and inhibitory neurons (on identities)

Neuron 56 Neuron 78 Neuron 344 Neuron 298 Neuron 157

. L L L L
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Histograms of neural activations over identities with the most images in LFW



Neuron 38 Neuron 50 Neuron 462 Neuron 354 Neuron 418

E: 0 5 0 5 0 5 0 5 0 5
@ Neuron 328 Neuron 316 Neuron 496 Neuron 484 Neuron 215
S N

0 5 0 5 0 5 0 5 0 5
o Neuron 5 Neuron 17 Neuron 432 Neuron 444 Neuron 28
- A A4 & & A
=3
L ] _ | _ |
% 0 5 0 5 0 5 0 5 0 5
— Neuron 152 Neuron 105 Neuron 140 Neuron 493 Neuron 237
2, l |
L
29 5 0 5 0 5 0 5 0 5
&y Neuron 12 Neuron 498 Neuron 342 Neuron 330 Neuron 10
L A A A 'y
::- (]
nl]
— L ] u L J
5; 0 5 0 5 0 5 0 5 0 5
‘-":}. Neuron 61 Neuron 73 Neuron 322 Neuron 410 Neuron 398
2 L
D
o
Q 0 5 0 5 0 5 0 5 0 5




3len

ajewad

Deeply learned features are selective to
identities and attributes

* Excitatory and inhibitory neurons (on attributes)
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Deeply learned features are selective to
identities and attributes

* With a single neuron, DeeplD2 reaches 97% recognition
accuracy for some identity and attribute

1
) >,
] Q
3 208
$0.8 Q )
© WDeeplD2+ @ WDeeplD2+
5 High-dim £ ah-di
R, lLégP ! 506 lngh-dlm
o6 8 LBP
@ 0.4
ko @
Q o
0.4 0.2 , : :
GB CP TB DR GS Male White Black Asian Indian
Identity classification accuracy on LFW with Attribute classification accuracy on LFW with

one single DeeplD2+ or LBP feature. GB, CP, one single DeeplD2+ or LBP feature.
TB, DR, and GS are five celebrities with the
most images in LFW.
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Deeply learned features are selective to
identities and attributes

* Visualize the semantic meaning of each neuron

High Resp. <= Low Resp. HighResp. <= Low Resp.
Gender Hair Color

Eye Shape




Attribute 1 Attribute K

Yi Sun, Xiaogang Wang, and Xiaoou Tang, “Sparsifying Neural Network Connections for Face
Recognition,” arXiv:1512.01891, 2015




Attribute 1 Attribute K Explore correlations between
neurons in different layers

~\ -7
PR

I L7/ SN
7 ~




Attribute 1 Attribute K Explore correlations between
neurons in different layers
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Alternatively learning weights and net structures

1. Train a dense network from scratch

2. Sparsify the top layer, and re-train the net

3. Sparsify the second top layer, and re-train the net
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Original deep neural network

Sparsified deep neural network and only keep 1/8 amount of
parameters after joint optimization of weights and structures

Train the sparsified network from scratch

99.3%

The sparsified network has enough learning capacity, but the original denser
network helps it reach a better intialization



Deep learning =?

Machine learning with big data

Feature learning

Joint learning

Contextual learning



Deep feature presentations are

Sparse

Selective

Robust to data corruption
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